
U.S. Department of Defense

High Level Architecture
Interface Specification
Version 1.3

DRAFT 9

5 February 1998

HLA IF SPEC V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

i

Contents

1. Overview...1

1.1 Scope..1
1.2 Purpose ..1
1.3 Background ..1

1.3.1 HLA federation object model framework ...1
1.3.2 General nomenclature and conventions..2
1.3.3 Organization of this document...3

2. References...4

3. Abbreviations, acronyms, and definitions ..4

3.1 Abbreviations and acronyms...4
3.2 Definitions ...4

4. Federation management ..5

4.1 Overview..5
4.2 Create Federation Execution...13
4.3 Destroy Federation Execution ...14
4.4 Join Federation Execution ..15
4.5 Resign Federation Execution ..16
4.6 Register Federation Synchronization Point ...17
4.7 Confirm Synchronization Point Registration †..18
4.8 Announce Synchronization Point †...19
4.9 Synchronization Point Achieved...20
4.10 Federation Synchronized † ...21
4.11 Request Federation Save ...22
4.12 Initiate Federate Save † ..23
4.13 Federate Save Begun ..24
4.14 Federate Save Complete..25
4.15 Federation Saved † ...26
4.16 Request Federation Restore...27
4.17 Confirm Federation Restoration Request †..28
4.18 Federation Restore Begun † ..29
4.19 Initiate Federate Restore † ..30
4.20 Federate Restore Complete ...31
4.21 Federation Restored † ...32

HLA IF SPEC V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

ii

5. Declaration management...33

5.1 Overview..33
5.1.1 Static properties of the FED...33
5.1.2 Definitions and constraints for object classes and class attributes ...33
5.1.3 Definitions and constraints for interaction classes and parameters35

5.2 Publish Object Class ...43
5.3 Unpublish Object Class...45
5.4 Publish Interaction Class ..47
5.5 Unpublish Interaction Class..48
5.6 Subscribe Object Class Attributes ...49
5.7 Unsubscribe Object Class..51
5.8 Subscribe Interaction Class...52
5.9 Unsubscribe Interaction Class...54
5.10 Start Registration For Object Class † ..55
5.11 Stop Registration For Object Class †...56
5.12 Turn Interactions On † ...57
5.13 Turn Interactions Off †...58

6. Object management...59

6.1 Overview..59
6.2 Register Object Instance ...64
6.3 Discover Object Instance † ...65
6.4 Update Attribute Values ...66
6.5 Reflect Attribute Values †...67
6.6 Send Interaction ...68
6.7 Receive Interaction † ..69
6.8 Delete Object Instance ..70
6.9 Remove Object Instance †...71
6.10 Local Delete Object Instance...72
6.11 Change Attribute Transportation Type..73
6.12 Change Interaction Transportation Type...74
6.13 Attributes In Scope † ..75
6.14 Attributes Out Of Scope †...76
6.15 Request Attribute Value Update..77
6.16 Provide Attribute Value Update † ...78
6.17 Turn Updates On For Object Instance † ..79
6.18 Turn Updates Off For Object Instance †..80

7. Ownership management..81

7.1 Overview..81
7.1.1 Ownership and publication ..84
7.1.2 Ownership transfer ..84
7.1.3 PriviledgeToDeleteObject ..87
7.1.4 User-supplied tags ...87
7.1.5 Sets of attribute designators ...87

7.2 Unconditional Attribute Ownership Divestiture ..88
7.3 Negotiated Attribute Ownership Divestiture ...89

HLA IF SPEC V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

iii

7.4 Request Attribute Ownership Assumption †..91
7.5 Attribute Ownership Divestiture Notification †...92
7.6 Attribute Ownership Acquisition Notification †..93
7.7 Attribute Ownership Acquisition ..94
7.8 Attribute Ownership Acquisition If Available ...96
7.9 Attribute Ownership Unavailable †...97
7.10 Request Attribute Ownership Release † ..98
7.11 Attribute Ownership Release Response ...99
7.12 Cancel Negotiated Attribute Ownership Divestiture..100
7.13 Cancel Attribute Ownership Acquisition...101
7.14 Confirm Attribute Ownership Acquisition Cancellation †...103
7.15 Query Attribute Ownership...104
7.16 Inform Attribute Ownership †...105
7.17 Is Attribute Owned By Federate ..106

8. Time management...107

8.1 Overview..107
8.1.1 Messages ...107
8.1.2 Logical time ..109
8.1.3 Time-regulating federates ..109
8.1.4 Time-constrained federates..110
8.1.5 Advancing time ...110
8.1.6 Putting it all together...112

8.2 Enable Time Regulation ...116
8.3 Time Regulation Enabled † ..118
8.4 Disable Time Regulation ..119
8.5 Enable Time Constrained ...120
8.6 Time Constrained Enabled † ..121
8.7 Disable Time Constrained ..122
8.8 Time Advance Request ...123
8.9 Time Advance Request Available ...125
8.10 Next Event Request ..127
8.11 Next Event Request Available...129
8.12 Flush Queue Request ..131
8.13 Time Advance Grant † ...133
8.14 Enable Asynchronous Delivery ...135
8.15 Disable Asynchronous Delivery ..136
8.16 Query LBTS ...137
8.17 Query Federate Time ..138
8.18 Query Minimum Next Event Time..139
8.19 Modify Lookahead..140
8.20 Query Lookahead..141
8.21 Retract..142
8.22 Request Retraction †...143
8.23 Change Attribute Order Type ...144
8.24 Change Interaction Order Type...145

9. Data distribution management...147

HLA IF SPEC V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

iv

9.1 Overview..147
9.2 Create Region...151
9.3 Modify Region..152
9.4 Delete Region...153
9.5 Register Object Instance With Region...154
9.6 Associate Region For Updates ..156
9.7 Unassociate Region For Updates...158
9.8 Subscribe Object Class Attributes With Region...159
9.9 Unsubscribe Object Class With Region ...161
9.10 Subscribe Interaction Class With Region ..162
9.11 Unsubscribe Interaction Class With Region ..164
9.12 Send Interaction With Region...165
9.13 Request Attribute Value Update With Region ...167
9.14 Change Thresholds †..168

10. Support services ..169

10.1 Overview..169
10.2 Get Object Class Handle ...170
10.3 Get Object Class Name...171
10.4 Get Attribute Handle ..172
10.5 Get Attribute Name ..173
10.6 Get Interaction Class Handle ..174
10.7 Get Interaction Class Name ..175
10.8 Get Parameter Handle...176
10.9 Get Parameter Name...177
10.10 Get Object Instance Handle...178
10.11 Get Object Instance Name...179
10.12 Get Routing Space Handle ..180
10.13 Get Routing Space Name..181
10.14 Get Dimension Handle..182
10.15 Get Dimension Name ...183
10.16 Get Attribute Routing Space Handle ...184
10.17 Get Object Class ...185
10.18 Get Interaction Routing Space Handle ..186
10.19 Get Transportation Handle..187
10.20 Get Transportation Name ...188
10.21 Get Ordering Handle ..189
10.22 Get Ordering Name ..190
10.23 Enable Class Relevance Advisory Switch..191
10.24 Disable Class Relevance Advisory Switch...192
10.25 Enable Attribute Relevance Advisory Switch ..193
10.26 Disable Attribute Relevance Advisory Switch ...194
10.27 Enable Attribute Scope Advisory Switch...195
10.28 Disable Attribute Scope Advisory Switch..196
10.29 Enable Interaction Relevance Advisory Switch ...197
10.30 Disable Interaction Relevance Advisory Switch ..198

11. Management object model (MOM)..199

HLA IF SPEC V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

v

11.1 MOM objects..201
11.1.1 Object class Manager.Federation ..201
11.1.2 Object class Manager.Federate..202

11.2 MOM interactions ..203
11.2.1 Interaction class Manager.Federate.Adjust ..204
11.2.2 Interaction class Manager.Federate.Request..205
11.2.3 Interaction class Manager.Federate.Report ...209
11.2.4 Interaction class Manager.Federate.Service ..216

12. Federation execution data (FED) ...229

12.1 FED data interchange format (FED DIF) ..229
12.1.1 BNF notation of the DIF ..229
12.1.2 HLA FED DIF BNF definition...231
12.1.3 FED DIF meta-data consistency...232
12.1.4 FED DIF glossary..233

12.2 Example FED file ...233

ANNEX A (normative) IDL application programmer’s interface...243

ANNEX B (normative) C++ application programmer’s interface ..245

ANNEX C (normative) Ada 95 application programmer’s interface..289

ANNEX D (normative) Java application programmer’s interface ..291

ANNEX E (informative) Bibliography ..293

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

vi

List of Figures

Figure 1—Basic states of the federation execution...5
Figure 2—Overall view of federate-to-RTI relationship...6
Figure 3—Lifetime of a federate..9
Figure 4—Normal activity...11
Figure 5—Object class (i)..38
Figure 6—Class attribute (i)..40
Figure 7—Interaction class (i)...42
Figure 8—Object instance (i) known...61
Figure 9—Instance attribute (i) ...62
Figure 10—Implications of ownership of instance attribute (i) ..63
Figure 11—Establishing ownership of instance attribute (i)...82
Figure 12—Temporal state..114
Figure 13—Routing space of two dimensions ..150
Figure 14—MOM object class structure ..199
Figure 15—MOM interaction class structure...200
Figure 16—Basic BNF constructs..230
Figure 17—HLA FED DIF BNF definition..232
Figure 18—FED file with MOM definitions..234

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

vii

List of Tables

Table 1—Order type of a sent message..108
Table 2—Order type of a received message ...109
Table 3—Service descriptions ...111
Table 4—Object class Manager.Federation...201
Table 5—Object class Manager.Federate..202
Table 6—Interaction subclass SetTiming ...204
Table 7—Interaction subclass ModifyAttributeStat ..204
Table 8—Interaction subclass SetServiceReporting ...205
Table 9—Interaction subclass SetExceptionLogging..205
Table 10—Interaction subclass RequestPublications ...205
Table 11—Interaction subclass RequestSubscriptions..206
Table 12—Interaction subclass RequestObjectsOwned ..206
Table 13—Interaction subclass RequestObjectsUpdated..206
Table 14—Interaction subclass RequestObjectsReflected ..206
Table 15—Interaction subclass RequestUpdatesSent ...208
Table 16—Interaction subclass RequestInteractionsSent ...208
Table 17—Interaction subclass RequestReflectionsReceived ...208
Table 18—Interaction subclass RequestInteractionsReceived ..209
Table 19—Interaction subclass RequestObjectInformation ..209
Table 20—Interaction subclass ReportObjectPublication ..210
Table 21—Interaction subclass ReportInteractionPublication ...210
Table 22—Interaction subclass ReportObjectSubscription...210
Table 23—Interaction subclass ReportInteractionSubscription..211
Table 24—Interaction subclass ReportObjectsOwned ..211
Table 25—Interaction subclass ReportObjectsUpdated ...212
Table 26—Interaction subclass ReportObjectsReflected ..212
Table 27—Interaction subclass ReportUpdatesSent ...212
Table 28—Interaction subclass ReportReflectionsReceived ...213
Table 29—Interaction subclass ReportInteractionsSent ...213
Table 30—Interaction subclass ReportInteractionsReceived..214
Table 31—Interaction subclass ReportObjectInformation..214
Table 32—Interaction subclass Alert ...214
Table 33—Interaction subclass ReportServiceInvocation ..215
Table 34—Interaction subclass ResignFederationExecution..217
Table 35—Interaction subclass InitiatePause ..217
Table 36—Interaction subclass PauseAchieved ...217
Table 37—Interaction subclass InitiateFederateSave ..218
Table 38—Interaction subclass FederateSaveBegun..218

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

viii

Table 39—Interaction subclass FederateSaveComplete ...219
Table 40—Interaction subclass InitiateFederateRestore ..219
Table 41—Interaction subclass FederateRestoreComplete ..219
Table 42—Interaction subclass PublishObjectClass ..220
Table 43—Interaction subclass UnpublishObjectClass ..220
Table 44—Interaction subclass PublishInteractionClass..220
Table 45—Interaction subclass UnpublishInteractionClass ...220
Table 46—Interaction subclass SubscribeObjectClassAttributes..221
Table 47—Interaction subclass UnsubscribeObjectClass...221
Table 48—Interaction subclass SubscribeInteractionClass ..221
Table 49—Interaction subclass UnsubscribeInteractionClass ..223
Table 50—Interaction subclass DeleteObjectInstance ...223
Table 51—Interaction subclass LocalDeleteObjectInstance...223
Table 52—Interaction subclass ChangeAttributeTransportationType...224
Table 53—Interaction subclass ChangeAttributeOrderType ..224
Table 54—Interaction subclass ChangeInteractionTransportationType ...224
Table 55—Interaction subclass ChangeInteractionOrderType ...225
Table 56—Interaction subclass UnconditionalAttributeOwnershipDivestiture225
Table 57—Interaction subclass EnableTimeRegulation ...226
Table 58—Interaction subclass DisableTimeRegulation ..226
Table 59—Interaction subclass EnableTimeConstrained ...226
Table 60—Interaction subclass DisableTimeConstrained ..226
Table 61—Interaction subclass EnableAsynchronousDelivery ...227
Table 62—Interaction subclass EnableAsynchronousDelivery ...227
Table 63—Interaction subclass ModifyLookahead...227
Table 64—Interaction subclass TimeAdvanceRequest..227
Table 65—Interaction subclass TimeAdvanceRequestAvailable ...228
Table 66—Interaction subclass NextEventRequest...228
Table 67—Interaction subclass NextEventRequestAvailable ..228
Table 68—Interaction subclass FlushQueueRequest ..228

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

1

1. Overview

1.1 Scope

The formal definition of the Department of Defense High Level Architecture (HLA) comprises three main
components: the HLA rules, the HLA interface specification, and the HLA object model template (OMT) (see
Clause 2). This document shall provide a complete description of the essential elements of the second component
of the HLA, the interface specification. The other two components of the HLA formal definition are described in
the following documents:
 High Level Architecture, Rules, Version 1.3
 High Level Architecture, Object Model Template, Version 1.3

In addition to these reference documents, the HLA technical library on the DMSO homepage
(http://www.dmso.mil) contains other information sources relevant to developing and executing HLA federations.

1.2 Purpose

This document provides a specification for the DoD HLA functional interfaces between federates and the runtime
infrastructure (RTI). The RTI provides services to federates in a way that is analogous to how a distributed
operating system provides services to applications. These interfaces are arranged into six basic RTI service groups:
a) federation management
b) declaration management
c) object management
d) ownership management
e) time management
f) data distribution management

The six service groups describe the interface between the federates and the RTI, and the software services provided
by the RTI for use by HLA federates. The initial set of these services was carefully chosen to provide those
functions most likely to be required across multiple federations. As a result, federate applications will require most
of the services described in this document. The RTI requires a set of services from the federate that are referred to
as “RTI initiated” and are denoted with a †.

1.3 Background

1.3.1 HLA federation object model framework

A concise and rigorous description of the object model framework is essential to the specification of the interface
between federates and the RTI and of the RTI services. The rules and terminology used to describe a federation
object model (FOM) are described in the High Level Architecture, Object Model Template, Version 1.3. A
simulation object model (SOM) describes salient characteristics of a federate to aid in its reuse and other activities
focused on the details of its internal operation. As such, a SOM is not the concern of the RTI and its services. A
FOM, on the other hand, deals with inter-federate issues and is relevant to the use of the RTI. The DoD HLA
definition states that FOMs describe
— The set of object classes chosen to represent the real world for a planned federation,
— The set of interaction classes chosen to represent the interplay among real-world objects,
— The attributes and parameters of these classes, and
— The level of detail at which these classes represent the real world, including all characteristics.

Every object is an instance of an object class found in the FOM. Object classes are chosen by the object model
designer to facilitate a desired organizational scheme. Each object class has a set of attributes associated with it. An

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

2

attribute is a distinct, identifiable portion of the object state. In this discussion, “attribute designator” refers to the
attribute and “attribute value” refers to its contents. From the federation perspective, the set of all attribute values
for an object instance shall completely define the state of the instance. Federates may associate additional state
information with an object instance that is not communicated between federates, but this is outside the purview of
the HLA federation object model.

Federates use the state of the object instances as one of the primary means of communication. At any time, only
one federate shall be responsible for simulating a given object instance attribute. That federate shall provide new
values for that instance attribute to the other federates in the federation execution through the RTI services. The
federate providing the new instance attribute values shall be said to be updating that instance attribute value.
Federates receiving those values shall be said to be reflecting that instance attribute.

The privilege to update a value for an instance attribute shall be uniquely held by a single federate at any given
time during a federation execution. A federate that has the privilege to update values for an instance attribute shall
be said to own that instance attribute. The RTI provides services that allow federates to exchange ownership of
object instance attributes. The federate that registers an object instance shall automatically own the
privilegeToDeleteObject instance attribute for that instance (all federates automatically publish the
privilegeToDeleteObject for all object classes they explicitly publish). The RTI provides services that allow
federates to transfer the “privilegeToDeleteObject” attribute in the same way as other attributes.

Each object instance shall havea designator. The value of an object instance designator shall be unique for each
federation execution. Object instance designators shall be dynamically generated by the RTI.

The FOM framework also allows for interaction classes for each object model. The types of interactions possible
and their parameters are specified within the FOM.

A federation is the combination of a particular FOM, a particular set of federates, and the RTI services. A
federation is designed for a specific purpose using a commonly understood federation object model and a set of
federates that can associate their individual semantics with that object model. A federation execution is an instance
of the Create Federation Execution service invocation and entails executing the federation with a specific FOM
and an RTI, and using various execution details.

1.3.2 General nomenclature and conventions

There are various entities (classes, attributes, parameters, regions, federates, object instances, etc.) referenced in
this document that can have the following different “views”:
— Name - human readable or for communication between federates
— Handle - capable of being manipulated by a computer or for communication between a federate and the RTI

 The arguments to the services described in this document will use different views of the entities depending on a
particular RTI implementation. For clarity, this document refers to only a generic view, known as a “designator,”
when referring to these entities.

 The following sets of data are needed for the implementation of a running RTI and federation executions:
— Federation execution data (FED) - information derived from the FOM (class, attribute, parameter names,

etc.) and used by the RTI at runtime. Each federation execution needs one. In the abstract, creation of a
federation execution is simply the binding of a federation execution name to a FED. The organization of
FEDs will become the subject of standardization so that object model development tools can automatically
generate them for any vendor’s RTI.

— RTI initialization data (RID) - RTI vendor-specific information needed to run an RTI. A RID is probably
supplied when an RTI is initialized.

For all federate-initiated services in this specification, except 4.2 Create Federation Execution, 4.3 Destroy
Federation Execution, and 4.4 Join Federation Execution, there is an implied supplied argument that is a federate’s
connection to a federation execution. For all RTI-initiated services, there is an implied supplied argument that is
also a federate’s connection to a federation execution. The manner in which these arguments are actually provided
to the services is dependent on the RTI implementation, and therefore is not shown in the service descriptions.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

3

Also, for the RTI-initiated services there are some implict pre-conditions which are not stated explicitly because
the RTI is assumed to be well-behaved.

1.3.3 Organization of this document

The six HLA service groups and support services are specified in Clauses 4 through 10. Each service is described
using several components:
— Name & Description - service name and narrative describing the functionality of the service
— Supplied Arguments - required and optional service-initiator provided arguments
— Returned Arguments - arguments returned by the service
— Pre-conditions - conditions that must exist for the service to execute correctly
— Post-conditions - conditions that will exist once the service has executed correctly
— Exceptions - notifications of any irregularity that may occur during service execution
— Related Services - other HLA services that are related to this service

After the clauses describing the service groups are clauses describing the management object model (MOM) and
federation execution data (FED).

Annexes A through D contain HLA application programmer’s interfaces (APIs) for the following languages:
— IDL
— C++
— Ada 95
— Java.

NOTE—Comments on this document should be sent by electronic mail to the Defense Modeling and Simulation Office
(DMSO) HLA specifications e-mail address (hla_specs@msis.dmso.mil). The subject line of the message should include the
clause number referenced in the comment. The body of each submittal should include: (1) the name and e-mail address of the
person making the comment (separate from the mail header), (2) reference to the RTI service or portion of the I/F specification
that the comment addresses (by clause and page number), (3) a one-sentence summary of the comment/issue, (4) a brief
description of the comment/issue, and (5) any suggested resolution or action to be taken.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

4

2. References

This standard shall be used in conjunction with the following publications. When the following standards
are superseded by an approved revision, the revision shall apply:

U.S. Department of Defense, High Level Architecture, Rules, Version 1.3,

U.S. Department of Defense, High Level Architecture, Object Model Template, Version 1.3,

3. Abbreviations, acronyms, and definitions

3.1 Abbreviations and acronyms

API application programmer’s interface
BNF Backus-Naur Form
DIF data interchange format
DoD Department of Defense
DMSO Defense Modeling and Simulation Office
EBNF extended Backus-Naur Form
FED federation execution data
FOM federation object model
HLA High Level Architecture
LBTS lower bound on the time stamp
LHS left-hand side
MOM management object model
OMDT object model development tool
RHS right-hand side
RID RTI initialization data
RO receive order
RTI runtime infrastructure
SOM simulation object model
TBS to be supplied
TSO time-stamped order

3.2 Definitions

For the purposes of this standard, the following terms and definitions shall apply:

TBS

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

5

4. Federation management

4.1 Overview

“Federation management” shall refer to the creation, dynamic control, modification, and deletion of a
federation execution.

Darkness

Federation
Execution

Exists

Supporting
Federates

Create
Federation
ExecutionDestroy

Federation
Execution

The First
Join
Federation
Execution

The Last
Resign

Federation
Execution

Join Federation Execution
Resign Federation Execution

Figure 1—Basic states of the federation execution

Before a federate can join a federation execution, the federation execution must exist. Figure 1 shows the
overall state of a federation execution as certain basic federation management services are employed.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

6

Federate RTI
Join Federation Execution

Establish Initial Data Requirements

Register Objects
Update Attribute Values

Discover Objects

Normal Federate Execution
Advance Time Request/Grant

Register/Discover Objects
Update/Reflect Attribute Values

Send/Receive Interactions
Delete/Remove Objects

Resign Federation Execution

Figure 2—Overall view of federate-to-RTI relationship

Once a federation execution exists, federates may join and resign from it in any sequence that is
meaningful to the federation user. Figure 2 presents a generalized view of the basic relationship between a
federate and the RTI during the federate participation in a federation execution. The broad arrows in
Figure 2 represent the general invocation of RTI service groups and are not intended to demonstrate strict
ordering requirements on the use of the services. The HLA concept shall not preclude a single software
system from participating in a federation execution as multiple federates nor shall it preclude a given
system from participating in multiple (independent) federation executions.

The state diagram in Figure 3 is the first of a series of hierarchical state diagrams that formally describe
the state of a given federate, from the perspective of that federate, in varying levels of detail. These state
diagrams are formal, accurate descriptions of federate state information depicted in the highly structured,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

7

compact, and expressive statechart notation pioneered by David Harel [A1]. In the next few paragraphs
we describe the first two of these statecharts in detail as a way of introducing some of Harel’s notation and
providing an understanding of how the complete set of statecharts in this document are hierarchically
interrelated.

As shown in Figure 3, with the successful completion of the Join Federation Execution service, a federate
shall be in the Joined Federate state, where it shall remain until it resigns from the federation execution.
As indicated by the dashed line in the Joined Federate state, the Joined Federate state shall consist of two
parallel state machines: one having to do with whether or not the federate is in the process of saving or
restoring federate state (depicted to the left of the dashed line), and the other having to do with whether or
not the federate is permitted to perform normal activity (depicted to the right of the dashed line). While in
the Joined Federate state, the federate shall simultaneously be in both a state depicted in the state machine
to the left of the dashed line and a state depicted in the state machine to the right of the dashed line.
Initially, upon entering the Joined Federate state, the federate shall be in the Active and Normal Activity
Permitted states, as indicated by the dark-circle start transitions. There are interdependencies between
these two parallel state machines and between the state machine on the left and the Temporal state
machine that appears later in this document. These interdependencies are depicted by the guards (shown
within square brackets) that are associated with some state transitions. If a transition has a guard
associated with it, the assertion within the guard must be true in order for a federate to make the
associated transition from one state to another.

As an example of an interdependency between the two parallel state machines depicted in the Joined
Federate state, if a federate that is in the Active state receives a Federation Restore Begun † service
invocation, it will transition into the Prepared to Restore state (as indicated by the label on the transition
from the Active state to the Prepared to Restore state). Once the federate enters the Prepared to Restore
state, it also enters the Normal Activity Not Permitted state (as indicated by the guard on the transition
from the Normal Activity Permitted to the Normal Activity Not Permitted state). That is, the guards
impose the following constraints on a federate: A federate may be in the Normal Activity Permitted state
(right side) if and only if it is also in the Active state (left side); and a federate may be in the Normal
Activity Not Permitted state (right side) if and only if it is also in the Instructed to Save, Saving, Waiting
for Federation to Save, Prepared to Restore, Restoring, or Waiting for Federation to Restore state (left
side).

The interdependency between the state machine on the left and the Temporal state machine depicted later
in this document is this: a federate that is in the Active state shall not receive an invocation of the Initiate
Federate Save † service unless that federate is either in the Not Constrained or the Time Advancing state.
The Not Constrained and Time Advancing states are depicted in the Temporal State diagram in Figure 12.
The fact that these two time management related states are mentioned in the guard on the transition from
the Active to the Instructed to Save state demonstrates the interdependencies between a federate’s
save/restore state and its temporal state. Specifically, it indicates that a federate must either be not
constrained by time management or be in a position to receive a time advance grant in order for it to
receive an invocation of the Initiate Federate Save † service.

If a federate is in the Normal Activity Permitted state, the federate may perform normal federate activity
such as registering and discovering object instances, publishing and subscribing to object class attributes
and interactions, updating and reflecting instance attribute values, sending and receiving interactions,
deleting and removing object instances, and requesting or receiving time advance grants. The Normal
Activity Permitted state, simple as it may appear in the Joined Federate statechart, actually contains all of
the other states that appear in the statecharts that appear subsequently in this document. Together, these
statecharts formally describe the state of a federate from that federate’s perspective. These statecharts are

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

8

complete in the sense that all transitions shown represent legal operations and transitions that are not
shown represent illegal operations. Illegal operations shall generate exceptions if invoked.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

9

PLACE

Figure 3—Lifetime of a federate

HERE

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

10

The Normal Activity Permitted state depicted in Figure 3 is elaborated in further detail in Figure 4 to
identify the three major portions of federate state: time management (indicated by the Temporal state),
state associated with each object class, and state associated with each interaction class. When a federate
enters the Joined Federate state, the federate shall have a temporal state and object and interaction class
states. The federate shall have an Object Class state for each object class that is defined in the FED file
that is associated with the federate execution. Likewise, the federate shall have an Interaction Class state
for each interaction class that is defined in the FED. A federate shall be in the temporal state and in each
of these object and interaction class states simultaneously (as depicted by the dashed lines separating the
state machines within the Temporal state). Time management is elaborated in further detail in Figure 12,
the Temporal State statechart. The state of an arbitrary object class is elaborated in further detail in Figure
5, the Object Class (i) statechart, and the state of an arbitrary interaction class is elaborated in further
detail in Figure 7, the Interaction Class (i) statechart.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

11

PLACE

Figure 4—Normal activity

HERE

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

12

As depicted in Figure 4, a federate that has joined a federation execution may be in one of the many states.
Any federate in the execution may initiate a save by invoking the Request Federation Save service. If
there is no federation time argument provided with the invocation of this service, the RTI shall instruct all
of the federates in the federation execution (including the requesting federate) to save state by invoking
the Initiate Federate Save † service at all of these federates as soon as possible. If there is a federation
time argument provided, the RTI shall invoke the Initiate Federate Save † service at each of the time-
constrained federates when their value of logical time advances to the value provided, and it shall invoke
the Initiate Federate Save † service at all non-time-constrained federates as soon as possible after it has
invoked it at all of the time-constrained federates.

When a federate receives an Initiate Federate Save † service invocation and subsequently saves its state, it
shall use the federation save label (which was specified by the federate requesting the save in the Request
Federation Save service) and its federate type (which it specified when it joined the federation execution)
to distinguish the saved information. The saved information shall be persistent, meaning that it is stored
onto disk or some other persistent medium and it remains intact even after the federation execution is
destroyed. The saved information can thus be used at a later date, by some new set of federates, to restore
all federates in the federation execution to the state that they were in when the save was accomplished.
The federation can then resume execution of the simulation from that saved point. The set of federates
joined to an execution when state is restored from a previously saved state need not be the exact set of
federates that were joined to the federation execution when the state being restored was saved. The
number of federates of each federate type that are joined to the federation execution, however, shall be the
same. The federate-type parameter argument supplied in the Join Federation Execution service
invocation, therefore, is crucial to the save-and-restore process. Declaring a federate to be of a given type
is equivalent to asserting that the federate can be restored using the state information saved by any other
federate of that type.

4.2

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

13

4.2 Create Federation Execution

The Create Federation Execution service shall create a new federation execution and add it to the set of
supported federation executions. Each federation execution created by this service shall be independent of
all other federation executions, and there shall be no inter-communication within the RTI between
federation executions. The FED designator argument shall identify the location of FED data that is
required for the federation execution to be created.

Supplied Arguments
— Federation execution name
— FED designator (see Clause 12)

Returned Arguments
— None

Pre-conditions
— The federation execution does not exist.

Post-conditions
— A federation execution exists with the given name that can be joined by federates.

Exceptions
— The federation execution already exists.
— Could not locate FED information from supplied designator
— Invalid FED
— RTI internal error

Related Services
— Destroy Federation Execution

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

14

4.3 Destroy Federation Execution

The Destroy Federation Execution service shall remove a federation execution from the RTI set of
supported federation executions. All federation activity shall have stopped and all federates shall have
resigned before invoking this service.

Supplied Arguments
— Federation execution name

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— There are no federates joined to this federation execution.

Post-conditions
— The federation execution does not exist.

Exceptions
— Federates are joined to the federation execution.
— The federation execution does not exist.
— RTI internal error

Related Services
— Create Federation Execution

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

15

4.4 Join Federation Execution

The Join Federation Execution service shall affiliate the federate with a federation execution. Invocation
of the Join Federation Execution service shall indicate the intention to participate in the specified
federation. The federate type parameter shall distinguish federate categories for federation save-and-
restore purposes. The returned federate designator shall be unique across all federates in a federation
execution.

Supplied Arguments
— Federate type
— Federation execution name

Returned Arguments
— Federate designator

Pre-conditions
— The federation execution exists.
— The federate is not joined to that execution.

Post-conditions
— The federate is a member of the federation execution.

Exceptions
— The federate is already joined to the federation execution.
— The specified federation execution does not exist.
— Invalid FED
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Resign Federation Execution
— Request Restore

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

16

4.5 Resign Federation Execution

The Resign Federation Execution service shall indicate the requested cessation of federation participation.
Before resigning, ownership of instance attributes held by the federate should be resolved. The federate
can transfer ownership of these instance attributes to other federates, release them for ownership
acquisition at a later time, or delete the object instance of which they are a part (assuming the federate has
the privilege to delete these object instances). As a convenience to the federate, the Resign Federation
Execution service shall accept an action argument that directs the RTI to perform zero or more of the
following actions:
— Release all owned instance attributes for future ownership acquisition. This shall place the instance

attributes into an unowned state (implying that their values are not being updated), which shall
make them eligible for ownership by another federate. See Clause 7 for a more detailed description.

— Delete all object instances for which the federate has that privilege (implied invocation of the
Delete Object Instance service).

Supplied Arguments
— Directive to

a) release ownership of all owned instance attributes
b) delete all object instances for which the federate has the delete privilege
c) perform action (a) and then action (b)
d) perform no actions

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— If directive (b) is supplied, the federate does not own any instance attributes of object instances for

which it does not also have the delete privilege.
— If directive (d) is supplied, the federate does not own any instance attributes in the federation

execution.

Post-conditions
— The federate is not a member of the federation execution.
— There are no instance attributes in the federation execution owned by the federate.
— If directive (b) or (c) are supplied all object instances for which the federate has the delete privilege

are deleted.

Exceptions
— The federate owns instance attributes.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Join Federation Execution

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

17

4.6 Register Federation Synchronization Point

The Register Federation Synchronization Point service shall be used to initiate the registration of an
upcoming synchronization point label. When a synchronization point label has been successfully
registered (indicated through the Confirm Synchronization Point Registration † service) the RTI shall
inform some or all federates of the label existence by invoking the Announce Synchronization Point †
service at those federates. The optional set of federate designators shall be used by the federate to specify
which federates in the execution should be informed of the label existence. If the optional set of federate
designators is empty or not supplied, all federates in the federation execution shall be informed of the
label existence. If the optional set of designators is not empty, all designated federates must be federation
execution members. The user-supplied tag shall provide a vehicle for information to be associated with the
synchronization point and shall be announced along with the synchronization label. It is possible for
multiple synchronization points registered by the same or different federates to be pending at the same
time. The synchronization labels, however, shall be unique.

Supplied Arguments
— Synchronization point label
— User-supplied tag
— Optional set of federate designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— If an optional set of federate designators is supplied, those federates must have joined the federation

execution.

Post-conditions
— The synchronization label is known to the RTI.

Exceptions
— The federate not a federation execution member.
— The designated federate not a federation execution member.
— The synchronization label is not unique.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Confirm Synchronization Point Registration †
— Announce Synchronization Point †\

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

18

4.7 Confirm Synchronization Point Registration †

The Confirm Synchronization Point Registration † service shall indicate to the federate the status of a
requested federation synchronization point registration. This service shall be invoked in response to a
Register Federation Synchronization Point service invocation. A positive success indicator informs the
federate that the label has been successfully registered. A negative success indicator informs the federate
that the label was already in use or that the registration of this label has otherwise failed. A registration
attempt that ends with a negative success indicator shall have no other effect on the federation execution.

Supplied Arguments
— Synchronization point label
— Registration success indicator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate has invoked Register Federation Synchronization Point service for the specified label.

Post-conditions
— If the registration success indicator is positive, the specified label and associated user supplied tag

will be announced to the appropriate federates.
— If the registration success indicator is negative, this service and the corresponding Register

Federation Synchronization Point service invocation have no consequence.

Exceptions
— Federate internal error.

Related Services
— Register Federation Synchronization Point

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

19

4.8 Announce Synchronization Point †

The Announce Synchronization Point † service shall inform a federate of the existence of a new
synchronization point label. When a synchronization point label has been registered with the Register
Federation Synchronization Point service, the RTI shall invoke the Announce Synchronization Point †
service at either all or at the specified set of federates to inform them of the label existence. The federates
informed of the existence of a given synchronization point label via the Announce Synchronization Point †
service shall form the synchronization set for that point. If the optional set of federate designators was null
or not provided when the synchronization point label was registered, the RTI shall invoke the Announce
Synchronization Point † service at all federates that join the federation execution after the synchronization
label was registered but before all federates that were informed of the synchronization label existence have
invoked the Synchronization Point Achieved service. These newly joining federates shall also become part
of the synchronization set for that point. Federates that resign from the federation execution after the
announcement of a synchronization point but before the federation synchronizes at that point shall be
removed from the synchronization set. The user-supplied tag supplied by the Announce Synchronization
Point † service shall be the tag that was supplied to the corresponding Register Federation
Synchronization Point service invocation.

Supplied Arguments
— Synchronization point label
— User-supplied tag

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The synchronization point has been registered.

Post-conditions
— The synchronization label is known to the federate and can be used in the Synchronization Point

Achieved and Federation Synchronized † services.

Exceptions
— Federate internal error

Related Services
— Register Federation Synchronization Point

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

20

4.9 Synchronization Point Achieved

The Synchronization Point Achieved service shall inform the RTI that the federate has reached the
specified synchronization point. Once the last federate in the synchronization set for a given point has
invoked this service, the RTI shall not invoke the Announce Synchronization Point † on any newly joining
federates.

Supplied Arguments
— Synchronization point label

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The synchronization point has been announced.

Post-conditions
— The federate is noted as having reached the specified synchronization point.

Exceptions
— The synchronization label is not registered.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Federation Synchronized †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

21

4.10 Federation Synchronized †

The Federation Synchronized † service shall inform the federate that all federates in the synchronization
set of the specified synchronization point have invoked the Synchronization Point Achieved service for
that point. This service shall be invoked at all federates that are in the synchronization set for that point,
indicating that the federates in the synchronization set have synchronized at that point. Once the
synchronization set for a point synchronizes at that point, that point shall no longer be registered and the
synchronization set for that point shall no longer exist.

Supplied Arguments
— Synchronization point label

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The synchronization point has been registered.
— The synchronization point has been announced.
— All federates have invoked Synchronization Point Achieved using the specified label.

Post-conditions
— The federate is informed that all federates, including it, have invoked Synchronization Point

Achieved using the specified label.

Exceptions
— Federate internal error

Related Services
— Synchronization Point Achieved

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

22

4.11 Request Federation Save

The Request Federation Save service shall specify that a federation save should take place. If the optional
federation time argument is not present, the RTI shall instruct all federation execution members to save
state as soon as possible after the invocation of the Request Federation Save service. If the optional
federation time argument is present, the RTI shall instruct each time-constrained federate to save state
when its value of logical time advances to the value provided; and it shall instruct non-time-constrained
federates to save state when the last time-constrained federate’s value of logical time advances to the value
of the optional federation save time provided. The RTI shall notify a federate to save state by invoking the
Initiate Federate Save † service at that federate. Only one requested save shall be outstanding at a time. A
new save request shall replace any outstanding save request. However, a save request cannot happen
during a save in progress, which is between the RTI invocation of the Initiate Federate Save † service
and RTI invocation of the Federation Saved † service.

Supplied Arguments
— Federation save label
— Optional value of federation time

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— Save not in progress

Post-conditions
— A federation save has been requested.
— All previous requested saves are canceled.

Exceptions
— Federation time has already passed (if optional time argument supplied).
— Federation time is invalid (if optional time argument is supplied).
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Enable Time Constrained
— Initiate Federate Save †
— Federate Save Begun
— Federate Save Complete
— Federation Saved †
— Request Restore

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

23

4.12 Initiate Federate Save †

The Initiate Federate Save † service shall instruct the federate to save state. The federate should save as
soon as possible after the invocation of the Initiate Federate Save † service. The label provided to the RTI
when the save was requested, via the Request Federation Save service, shall be supplied to the federate.
The federate shall use this label, the name of the federation execution, and its federate type, which it
supplied when it invoked the Join Federation Execution service, to distinguish the saved state
information. If a federate is not time-constrained, it can expect to receive an Initiate Federate Save †
service invocation at any time. If a federate is time constrained, it can expect to receive an Initiate
Federate Save † service invocation only when one of the following services is pending: Time Advance
Request, Time Advance Request Available, Next Event Request, Next Event Request Available, or Flush
Queue Request. The federate shall stop providing new information to the federation immediately after
receiving the Initiate Federate Save † service invocation. The federate may resume providing new
information to the federation only after receiving the Federation Saved † service invocation.

Supplied Arguments
— Federation save label

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— A federation save has been scheduled.

Post-conditions
— The federate has been notified to begin saving its state.

Exceptions
— Unable to perform save
— Federate internal error

Related Services
— Request Federation Save
— Federate Save Begun
— Federate Save Complete
— Federation Saved †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

24

4.13 Federate Save Begun

The Federate Save Begun service shall notify the RTI that the federate is beginning to save its state.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate has received an Initiate Federate Save † invocation.
— The federate is ready to start saving its state.

Post-conditions
— The RTI has been informed that the federate has begun saving its state.

Exceptions
— Save not initiated
— The federate is not a federation execution member.
— Restore in progress
— RTI internal error

Related Services
— Request Federation Save
— Initiate Federate Save †
— Federate Save Complete
— Federation Saved †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

25

4.14 Federate Save Complete

The Federate Save Complete service shall notify the RTI that the federate has completed its save attempt.
The save-success indicator shall inform the RTI that the federate save either succeeded or failed.

Supplied Arguments
— Federate save-success indicator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate has invoked the Federate Save Begun service for this save.
— The federate has completed the attempt to save its state.

Post-conditions
— The RTI has been informed of the status of the state save attempt.

Exceptions
— Invalid save-success indicator
— Save not initiated
— The federate is not a federation execution member.
— Restore in progress
— RTI internal error

Related Services
— Request Federation Save
— Initiate Federate Save †
— Federate Save Begun
— Federation Saved †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

26

4.15 Federation Saved †

The Federation Saved † service shall inform the federate that the federation save process is complete, and
shall indicate whether it completed successfully or not. If the save-success indicator argument indicates
success, this means that all federates at which the Initiate Federate Save † service was invoked have
invoked the Federate Save Complete service with a save-success indicator that indicated success. If the
save-success indicator argument indicates failure, this means that one or more federates at which the
Initiate Federate Save † service was invoked have invoked the Federate Save Complete service with a
save-success indicator that indicated failure, or that the RTI detected failure at one or more of these
federates. All federates that received an invocation of the Initiate Federate Save † service shall receive an
invocation of the Federation Saved † service. If a federate that received an invocation of the Initiate
Federate Save † service resigns from the federation execution before the Federation Saved † service for
that save is invoked, this resignation shall be considered a failure of the federation save, and the
Federation Saved † service shall be invoked with a save-success indicator of failure.

Supplied Arguments
— Federation save-success indicator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has been informed of the success or failure of the federation save attempt.
— The federate may resume providing new information to the federation.

Exceptions
— Federate internal error

Related Services
— Request Federation Save
— Initiate Federate Save †
— Federate Save Begun
— Federate Save Complete

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

27

4.16 Request Federation Restore

The Request Federation Restore service shall direct the RTI to begin the federation execution restoration
process. Federation restoration shall begin as soon after the validation of the Request Federation Restore
service invocation as possible. A valid federation restoration request shall be indicated with the Confirm
Federation Restoration Request † service.

Supplied Arguments
— Federation save label

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federation has a save with the specified label.
— The correct number of federates of the correct types that were joined to the federation execution

when the save was accomplished are currently joined to the federation execution.
— All previous Request Federation Restore service invocations from the federate have been

acknowledged with a corresponding Confirm Federation Restoration Request †.

Post-conditions
— The RTI has been notified of the request to restore a former federation execution state.

Exceptions
— The federate not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Confirm Federation Restoration Request †
— Request Federation Save
— Federation Restore Begun †
— Initiate Federate Restore †
— Federate Restore Complete
— Federation Restored †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

28

4.17 Confirm Federation Restoration Request †

The Confirm Federation Restoration Request † shall indicate to the federate the status of a requested
federation restoration. This service shall be invoked in response to a Register Federation Restore service
invocation. A positive request success indicator informs the federate that the RTI restoration state
information has been located which corresponds to the indicated label and federation execution name, a
census of joined federates matches in number and type the census of federates present when the save was
taken, and no other federate is currently attempting to restore the federation. Should more that one
federate attempt to restore the federation at a given time, one federate shall receive a positive indication
though this service and all others shall receive a negative indication. A federation restoration attempt that
ends with a negative request success indicator shall have no other effect on the federation execution.

Supplied Arguments
— Federation save label
— Request success indicator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate has requested a federation restore via the Register Federation Restore service

Post-conditions
— If the request success indicator is positive, restore in progress.
— If the request success indicator is positive, the federation has a saved state with the specified label.
— If the request success indicator is positive, the correct number of federates of the correct types that

were joined to the federation execution when the save was accomplished are currently joined to the
federation execution.

— If the request success indicator is negative, this service and the corresponding Request Federation
Restore service invocation have no consequence

Exceptions
— Federate internal error.

Related Services
— Request Federation Restore

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

29

4.18 Federation Restore Begun †

The Federation Restore Begun † service shall inform the federate that a federation restoration is
imminent. The federate shall stop providing new information to the federation immediately after receiving
the Federation Restore Begun † service invocation. The federate may resume providing new information
to the federation only after receiving the Federation Restored † service invocation.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has been instructed to stop providing new information to the federation.

Exceptions
— Federate internal error

Related Services
— Request Federation Restore
— Initiate Federate Restore †
— Federate Restore Complete
— Federation Restored †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

30

4.19 Initiate Federate Restore †

The Initiate Federate Restore † service shall instruct the federate to return to a previously saved state. The
federate shall select the appropriate restoration state information based on the name of the current
federation execution, the supplied federation save label, and the supplied federate type. As a result of this
service invocation, a federate’s designator could change from the value supplied by the Join Federation
Execution service.

Supplied Arguments
— Federation save label
— Federate designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate has a save with the specified label.

Post-conditions
— The federate has been informed to begin restoring state.

Exceptions
— There is no federate save associated with the label.
— Could not initiate restore
— Federate internal error

Related Services
— Request Federation Restore
— Federation Restore Begun †
— Federate Restore Complete
— Federation Restored †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

31

4.20 Federate Restore Complete

The Federate Restore Complete service shall notify the RTI that the federate has completed its restore
attempt. If restore was successful, the federate shall be in the state that either it or some other federate of
its type was in when the federation save associated with the label occurred, with the distinction that the
federate shall now be waiting for an invocation of the Federation Saved † service.

Supplied Arguments
— Federate restore-success indicator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate was directed to restore through invocation of the Initiate Restore service.
— If restore was successful, the federate is in a state identical to the state that either it or some other

federate of its type was in when the federation save associated with the supplied label occurred,
with the distinction that the federate is now waiting for an invocation of the Federation Saved †
service. If restore was unsuccessful, the federate is in an undefined state.

Post-conditions
— The RTI has been informed of the status of the restore attempt.

Exceptions
— Unknown label
— Invalid restore-success indicator
— Restore not requested
— The federate is not a federation execution member.
— Save in progress
— RTI internal error

Related Services
— Request Federation Restore
— Federation Restore Begun †
— Initiate Federate Restore †
— Federate Restore Complete
— Federation Restored †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

32

4.21 Federation Restored †

The Federation Restored † service shall inform the federate that the federation restore process is
complete, and shall indicate whether it completed successfully or not. If the restore-success indicator
argument indicates success, this means that all federates at which the Federation Restore Begun † service
was invoked have invoked the Federate Restore Complete service with a restore-success indicator that
indicated success. If the restore-success indicator argument indicates failure, this means that one or more
federates at which the Federation Restore Begun † service was invoked have invoked the Federate
Restore Complete service with a restore-success indicator that indicated failure, or that the RTI detected
failure at one or more of these federates. All federates that received an invocation of the Federation
Restore Begun † service shall receive an invocation of the Federation Restored † service. If a federate that
received an invocation of the Federation Restore Begun † service resigns from the federation execution
before the Federation Restored † service for that restore is invoked, this resignation shall be considered a
failure of the federation restoration, and the Federation Restored † service shall be invoked with a restore-
success indicator of failure.

Supplied Arguments
— Federation restore-success indicator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate has a save with the specified label.

Post-conditions
— The federate has been informed regarding the success or failure of the restoration attempt.
— The federate may resume providing new information to the federation.

Exceptions
— Federate internal error

Related Services
— Request Federation Restore
— Federation Restore Begun †
— Initiate Federate Restore †
— Federate Restore Complete

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

33

5. Declaration management

5.1 Overview

Federates shall use declaration management services to declare their intention to generate and receive
information. A federate shall invoke appropriate declaration management services before it can register or
discover object instances, update or reflect instance attribute values, and send or receive interactions.
Declaration management services, together with object management services, ownership management
services, and the object and interaction class hierarchies defined in the Federation Execution Data (FED)
shall determine the
— Object classes at which object instances may be registered,
— Object classes at which object instances are discovered,
— Instance attributes that are available to be updated and reflected,
— Interactions that may be sent,
— Interaction classes at which interactions are received, and the
— Parameters that are available to be sent and received.

The effects of declaration management services shall be independent of federation time.

5.1.1 Static properties of the FED

The following static properties of the FED shall establish vocabulary for subsequent declaration
management discussion:
a) Every class shall have at most one immediate super-class. A class shall not be a super-class of a class

that is its super-class.
b) Every object class shall have an associated set of class attributes declared in the FED.
c) An inherited attribute of an object class is a class attribute that was declared in a super-class.
d) The available attributes of an object class are the set of declared attributes of that object class in

union with the set of inherited attributes of that object class.
e) Every interaction class shall have an associated set of parameters declared in the FED.
f) An inherited parameter of an interaction class is a parameter that was declared in a super-class.
g) The available parameters of an interaction class are the set of declared parameters of that interaction

class in union with the set of inherited parameters of that interaction class.
h) For any service that takes an object class and a set of attribute designators as arguments, only the

available attributes of that object class may be used in the set of attribute designators. Being an
available attribute of an object class shall be a necessary, but not necessarily a sufficient, condition for
an attribute to be used in the set of attribute designators for such a service.

i) For any service that takes an object instance and a set of attribute designators as arguments, only the
available attributes of that object instance’s known class at the involved (invoking or invoked)
federate may be used in the set of attribute designators. Being an available attribute of the object
instance’s known class shall be a necessary, but not necessarily a sufficient, condition for an attribute
to be used in the set of attribute designators for such a service.

5.1.2 Definitions and constraints for object classes and class attributes

The following declaration management definitions and constraints shall pertain to object classes and class
attributes as declared in the class hierarchy of the FED:

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

34

a) An attribute may be used as an argument to Subscribe Object Class Attributes and Publish Object
Class service invocations for a particular object class if and only if the attribute is an available
attribute of that object class.

b) From a federate's perspective, the subscribed attributes of an object class shall be the class attributes
that were arguments to the most recent Subscribe Object Class Attributes service invocation by that
federate for that object class, assuming the federate did not subsequently invoke the Unsubscribe
Object Class service for that object class. If the federate did subsequently invoke the Unsubscribe
Object Class service for that object class, if the federate has not invoked the Subscribe Object Class
Attributes service for that object class, or if the most recent Subscribe Object Class Attributes service
invocation by that federate for that object class had an empty set of class attributes as argument, there
shall be no subscribed attributes of that class for that federate. (Subscribe Object Class Attributes and
Unsubscribe Object Class service invocations for one object class shall have no effect on the
subscribed attributes of any other object class.)

c) If a class attribute is a subscribed attribute of an object class, the federate shall be subscribed to that
class attribute either actively or passively, but not both.

d) From a federate's perspective, the published attributes of an object class shall be the class attributes
that were arguments to the most recent Publish Object Class service invocation by that federate for
that object class, assuming the federate did not subsequently invoke the Unpublish Object Class
service for that object class. If the federate did subsequently invoke the Unpublish Object Class
service for that object class, if the federate has not invoked the Publish Object Class service for that
object class, or if the most recent Publish Object Class Attributes service invocation by that federate
for that object class had an empty set of class attributes as argument, there shall be no published
attributes of that class for that federate. (Publish Object Class and Unpublish Object Class service
invocations for one object class shall have no effect on the published attributes of any other object
class.)

e) If a federate takes action that results in a class attribute that was a published attribute of its class no
longer being a published attribute of its class, the federate shall be said to have stopped publishing
that class attribute at that class. There shall be two ways that a federate can stop publishing a class
attribute at a specific class: by invoking the Unpublish Object Class service for that object class or by
invoking the Publish Object Class service for that object class without that class attribute designator
among the arguments. These two ways of stopping publication of a class attribute shall be depicted by
the labels Unpublish and Publish (-i) on the transition from the Published to the Unpublished state in
the Publication state diagram of the Class Attribute (i) state (Figure 6).

f) From a federate’s perspective, an object class shall be subscribed if and only if
 It was an argument to a Subscribe Object Class Attributes service invocation by that federate,
 A non-empty set of class attributes was used as an argument to the most recent Subscribe

Object Class Attributes service invocation for that object class by that federate, and
 The most recent Subscribe Object Class Attributes service invocation for that object class by

that federate was not subsequently followed by an Unsubscribe Object Class service invocation
for the object class.

g) From a federate's perspective, an object class shall be published if and only if:
 It was an argument to a Publish Object Class service invocation by that federate,
 A non-empty set of class attributes was used as an argument to the most recent Publish Object

Class service invocation for that object class by that federate, and
 The most recent Publish Object Class service invocation for that object class by that federate

was not subsequently followed by an Unpublish Object Class service invocation for that object
class.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

35

h) Federates may invoke the Register Object Instance service only with a published object class as an
argument.

i) The registered class of an object instance shall be the object class that was an argument to the
Register Object Instance service invocation for that object instance.

j) Every object instance shall have one federation-wide registered class that cannot change.

k) An object instance shall have a candidate discovery class at a federate if and only if the federate is
subscribed to either the registered class of the object instance or to a super-class of the registered class
of the object instance. If an object instance has a candidate discovery class at a federate, the candidate
discovery class of the object instance shall be the registered class of the object instance, if subscribed.
Otherwise, it shall be the closest super-class of the registered class to which the federate is subscribed.

l) If the Discover Object † service is invoked at a federate, the object instance discovered as a result of
this service invocation shall have a discovered class at that federate. The discovered class of the
object instance shall be the object instance’s candidate discovery class at the time of the Discover
Object † service invocation. The discovered class of the object instance shall be a supplied parameter
to the Discover Object † service invocation.

m) An object instance may have at most one discovered class in each federate. This discovered class may
vary from federate to federate. Once an object instance is discovered, its discovered class shall not
change. If a federate invokes the Local Delete Object Instance service for a given object instance, that
object instance can be rediscovered. It may be rediscovered at a different discovered class.

n) If a federate has registered or discovered an object instance and it has not subsequently
 invoked the Local Delete Object Instance service for that object instance,
 invoked the Delete Object Instance service for that object instance, or
 received an invocation of the Remove Object Instance † service for that object instance,

 the object instance shall be known to that federate, and that object instance has a known class at
that federate. The known class of that object instance at that federate shall be the object instance’s
registered class if the federate knows about the object instance as a result of having registered it. The
known class of that object instance at that federate shall be the object instance’s discovered class if
the federate knows about the object instance as a result of having discovered it.

o) A federate may own and update only an instance attribute for which it is publishing the corresponding
class attribute at the known class of the instance attribute.

p) An update to an instance attribute by the federate that owns that instance attribute can be reflected
only to other federates that are subscribed to the corresponding class attribute at the instance
attribute’s known class at the subscribing federate.

5.1.3 Definitions and constraints for interaction classes and parameters

The following declaration management definitions and constraints shall pertain to interaction classes and
parameters as declared in the interaction class hierarchy of the FED:

a) From a federate's perspective, an interaction class shall be subscribed if and only if it was an
argument to a Subscribe Interaction Class service invocation by that federate that was not
subsequently followed by an Unsubscribe Interaction Class service invocation for that interaction
class.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

36

b) If an interaction class is subscribed, the federate shall be subscribed to that interaction class either
actively or passively, but not both.

c) From a federate's perspective, an interaction class shall be published if and only if it was an argument
to a Publish Interaction Class service invocation by that federate that was not subsequently followed
by an Unpublish Interaction Class service invocation for that interaction class.

d) Federates may invoke the Send Interaction service only with a published interaction class as an
argument.

e) The sent class of an interaction shall be the interaction class that was an argument to the Send
Interaction service invocation for that interaction.

f) Every interaction shall have one federation-wide sent class.

g) The Receive Interaction † service can be invoked at a federate only with a subscribed interaction class
as an argument.

h) If the Receive Interaction † service is invoked at a federate, the interaction received as a result of this
service invocation shall have a received class at that federate. The received class of an interaction is
the interaction class that is an argument to the Receive Interaction † service invocation. The received
class shall be the interaction's sent class, if subscribed. Otherwise, the received class shall be the
closest super-class of the sent class that is subscribed at the time of the Receive Interaction † service
invocation.

i) An interaction may have at most one received class in each federate. This received class may vary
from federate to federate.

j) Only the available parameters of an interaction class may be used in a Send Interaction service
invocation with that interaction class as argument.

k) The sent parameters of an interaction shall be the parameters that were arguments to the Send
Interaction service invocation for that interaction.

l) The received parameters of an interaction shall be the parameters that were arguments to the Receive
Interaction † service invocation for that interaction.

m) The received parameters of an interaction shall be the subset of the sent parameters that are available
parameters for the interaction's received class.

n) The received parameters for a given interaction may vary from federate to federate, depending on the
received class of the interaction.

When an object instance’s discovered class is a super-class of its registered class, the object instance shall
be said to have been promoted from the registered class to the discovered class. Similarly, when an
interaction's received class is a super-class of its sent class, the interaction shall be said to have been
promoted from the sent class to the received class. Promotion is important for protecting federate code
from new subclasses added to the FED. As the FED is expanded to include new object and interaction
classes, promotion ensures that existing federate code need not change to work with the expanded FED.

The following figures depict formal representations of the state of an arbitrary object class, an arbitrary
class attribute, and an arbitrary interaction class. Figure 5 depicts the state of an arbitrary object class and
it deals with object classes at two levels. First, it establishes that each class attribute of the object class has
some state worth modeling. Second, it establishes that there are an arbitrary number of instances of each

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

37

object class. Further, it defines what conditions allow an object instance to be known by a federate as an
instance of that object class.

Conceptually, the state of an object class shall comprise the state of the class attributes of that object class
and of the object instances of that object class. The state of an object instance shall further comprise the
state of the instance attributes of that object instance. There shall be a correspondence between the
instance attributes and their corresponding class attributes. This correspondence shall be modeled via the
index to each attribute. A reference within instance attribute (i) to something modeled at the class
attribute (i) level shall mean that the i’s are the same and thus the corresponding class attribute is being
referenced.

Each object class shall have a fixed number of available class attributes as defined in the FED. The
number of object instances of a given class, however, shall be arbitrary.

An object instance of an object class shall become known by the registering federate when the object
instance is registered. It may become known by other federates in the federation execution. If it becomes
known by other federates in the federation execution, it shall become known by them as a result of being
discovered.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

38

PLACE

Figure 5—Object class (i)

HERE

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

39

Figure 6 depicts the state of an arbitrary class attribute and shows the properties that may be controlled by
a federate at the class attribute level. Specifically, a federate can publish or subscribe to class attributes.
While the Publish Object Class and Subscribe Object Class Attributes service invocations can take sets of
class attributes as an argument, Figure 6 depicts only a single class attribute. So, for example, “Publish
(i)” shall mean that the ith class attribute was an element of the set used as an argument to the Publish
Object Class service. A “Publish (-i)” shall mean that the Publish Object Class service was invoked, but
that the ith class attribute was not an element of the set used as an argument to the service.

The federate may also direct the RTI via the Enable/Disable Class Relevance Advisory Switch services to
indicate that the federate does or does not want the RTI to use the Start Registration For Object Class †
and Stop Registration For Object Class † services to inform the federate when registration of new object
instances are relevant to the other federates in the federation execution.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

40

PLACE

Figure 6—Class attribute (i)

HERE

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

41

Figure 7 depicts the state of an arbitrary interaction class and shows the properties relating to interaction
classes that may be controlled by a federate. Specifically, a federate can publish or subscribe to interaction
classes.

The federate may also direct the RTI via the Enable/Disable Interaction Relevance Advisory Switch
services to indicate that the federate does or does not want the RTI to use the Turn Interactions On † and
Turn Interactions Off † services to inform the federate when interactions of a given class are relevant to
the other federates in the federation execution.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

42

PLACE

Figure 7—Interaction class (i)

HERE

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

43

5.2 Publish Object Class

The information conveyed by the federate via the Publish Object Class service shall be used in multiple
ways. First, it shall indicate an object class of which the federate may subsequently register object
instances. Second, it shall indicate the class attributes of the object class for which the federate is capable
of owning the corresponding instance attributes of object instances whose known class is that class. Only
the federate that owns an instance attribute can provide values for that instance attribute to the federation.
The federate may become the owner of an instance attribute and thereby be capable of updating its value
in two ways:
— By registering an object instance of a published class. Upon registration of an object instance, the

registering federate shall become the owner of all instance attributes of that object instance for
which the federate is publishing the corresponding class attributes at the registered class of the
object instance.

— By using ownership management services to acquire instance attributes of object instances. The
federate may acquire only those instance attributes of object instances for which the federate is
publishing the corresponding class attributes at the known class of the object instance.

Each use of this service shall replace all information specified to the RTI in previous service invocations
for the same object class. A class attribute that appears in this service invocation that also appeared in the
previous service invocation for the same object class shall continue to be a published attribute of the
specified object class. A class attribute that appears in this service invocation that did not appear in the
previous service invocation for the same object class shall begin to be a published attribute of the specified
class. A class attribute that does not appear in this service invocation but that did appear in the previous
service invocation for the same object class shall stop being a published attribute of the specified class.

Invoking this service with an empty set of class attributes shall be equivalent to invoking the Unpublish
Object Class service with the specified object class.

Supplied Arguments
— Object class designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The specified object class is defined in the FED.
— The specified class attributes are available attributes of the specified object class.
— If this service has been previously invoked for the same object class, then for each class attribute

that was specified in the previous service invocation for this object class that was not specified in
the current service invocation for this object class, there are no federate-owned corresponding
instance attributes
 that are part of an object instance whose known class is the specified class, and
 for which the federate has either

a) invoked the Attribute Ownership Acquisition service, but has not yet received an
invocation of either the Confirm Attribute Ownership Acquisition Cancellation †
service or the Attribute Ownership Acquisition Notification † service, or

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

44

b) invoked the Attribute Ownership Acquisition If Available service, but has not yet
received an invocation of the Attribute Ownership Unavailable † service, received an
invocation of the Attribute Ownership Acquisition Notification † service, or invoked
the Attribute Ownership Acquisition service (after which condition 1 (above) applies.

Post-conditions
— The federate may now register object instances of the specified class.
— If the federate registers an object instance of the specified class, it shall own and may therefore

update the instance attributes of that object instance that correspond to the specified class attributes.
— The specified class attributes shall now be published attributes of the specified object class. If there

was a previous Publish Object Class service invocation for the specified object class by this
federate, then for each class attribute that was specified in the previous service invocation that is
not specified in the current service invocation (if any), the class attribute shall no longer be a
published attribute of the specified object class.

— all corresponding instance attributes of object instances whose known class is the specified object
class that were owned by the federate shall be unowned.

Exceptions
— The object class is not defined in the FED.
— The specified class attributes are not available attributes of the specified object class.
— Cannot Unpublish due to pending attempt to acquire instance attribute ownership.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Unpublish Object Class
— Subscribe Object Class Attributes
— Register Object Instance
— Attribute Ownership Divestiture Notification †
— Attribute Ownership Acquisition
— Attribute Ownership Acquisition If Available

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

45

5.3 Unpublish Object Class

The Unpublish Object Class service shall inform the RTI that the federate will no longer register object
instances of the specified object class. The federate shall lose ownership of all owned instance attributes of
object instances whose known class is the specified object class, which means that the federate can no
longer update any instance attribute values of object instances whose known class is the specified object
class.

Supplied Arguments
— Object class designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The object class is defined in the FED.
— The federate is publishing the object class.
— For each class attribute that was specified in the most recent Publish Object Class service

invocation for this object class, there are no federate-owned corresponding instance attributes
 that are part of an object instance whose known class is the specified class, and
 for which the federate has either

a) invoked the Attribute Ownership Acquisition service, but has not yet received an
invocation of either the Confirm Attribute Ownership Acquisition Cancellation †
service or the Attribute Ownership Acquisition Notification † service, or

b) invoked the Attribute Ownership Acquisition If Available service, but has not yet
received an invocation of the Attribute Ownership Unavailable † service, received an
invocation of the Attribute Ownership Acquisition Notification † service, or invoked
the Attribute Ownership Acquisition service [after which condition (a) applies].

Post-conditions
— The federate may not register object instances of the specified object class.
— The federate shall no longer own any instance attributes of object instances whose known class is

the specified object class.

Exceptions
— The object class is not defined in the FED.
— The federate is not publishing the object class.
— Cannot unpublish due to pending attempt to acquire instance attribute ownership.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Publish Object Class
— Attribute Ownership Divestiture Notification †
— Attribute Ownership Acquisition

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

46

— Attribute Ownership Acquisition If Available

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

47

5.4 Publish Interaction Class

The Publish Interaction Class service shall inform the RTI which classes of interactions the federate will
send to the federation execution.

Supplied Arguments
— Interaction class designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The interaction class is specified in the FED.

Post-conditions
— The federate may now send interactions of the specified class.

Exceptions
— The interaction class is not defined in the FED.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Unpublish Interaction Class
— Subscribe Interaction Class
— Send Interaction

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

48

5.5 Unpublish Interaction Class

The Unpublish Interaction Class service shall inform the RTI that the federate will no longer send
interactions of the specified class.

Supplied Arguments
— Interaction class designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The interaction class is specified in the FED.
— The federate is publishing the interaction class.

Post-conditions
— The federate may not send interactions of the specified interaction class.

Exceptions
— The interaction class is not defined in the FED.
— The federate is not publishing the interaction class.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Publish Interaction Class

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

49

5.6 Subscribe Object Class Attributes

The Subscribe Object Class Attributes service shall specify an object class at which the RTI can notify the
federate of discovery of object instances. When subscribing to an object class, the federate may also
provide a set of class attributes. The values of only the instance attributes that correspond to the specified
class attributes, for all object instances discovered as a result of this service invocation, shall be provided
to the federate from the RTI (via the Reflect Attribute Values † service).The set of class attributes provided
shall be a subset of the available attributes of the specified object class.

A federate can only discover an object as being of a class to which the federate is subscribed.

If a federate subscribes to multiple locations in an object class inheritance tree, each relevant object
registration can result in at most one object discovery by the subscribing federate. The discovered class
shall be the registered class, if subscribed by the discovering federate. Otherwise, the discovered class
shall be the closest super-class of the registered class subscribed by the discovering federate.

Each use of this service shall replace all information specified to the RTI in any previous service
invocations for the same object class.

Invoking this service with an empty set of class attributes shall be equivalent to invoking the Unsubscribe
Object Class service with the specified object class.

If the optional passive subscription indicator indicates that this is a passive subscription,
a) the invocation of this service shall not cause the Start Registration For Object Class † service to be

invoked at any other federate and
b) if this invocation replaces a previous subscription that was active rather than passive, invocation of

this service may cause the Stop Registration for Object Class † service to be invoked at one or more
other federates.

If the optional passive subscription indicator is not present or indicates that this is an active subscription,
the invocation of this service may cause the Start Registration For Object Class service to be invoked at
one or more other federates.

Supplied Arguments
— Object class designator
— Set of attribute designators
— Optional passive subscription indicator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The specified object class is defined in the FED.
— The specified class attributes are available attributes of the specified object class.

Post-conditions
— The RTI has been informed of the federate’s requested subscription.

Exceptions

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

50

— The object class is not defined in the FED.
— The specified class attributes are not available attributes of the specified object class.
— Invalid passive subscription indicator.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Unsubscribe Object Class Attributes
— Publish Object Class
— Discover Object
— Attributes In Scope †
— Reflect Attribute Values †
— Start Registration For Object Class †
— Stop Registration for Object Class †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

51

5.7 Unsubscribe Object Class

The Unsubscribe Object Class service shall inform the RTI that it is to stop notifying the federate of
object instance discovery at the specified object class. All in-scope instance attributes of known object
instances whose known class is the specified object class shall go out of scope.

Supplied Arguments
— Object class designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The object class is defined in the FED.
— The federate is subscribed to the object class.

Post-conditions
— The federate shall receive no subsequent Discover Object service invocations for the specified

object class.
— The federate shall receive no subsequent Reflect Attribute Values † service invocations for any

instance attributes of object instances whose discovered class is the specified object class.

Exceptions
— The object class is not defined in the FED.
— The federate is not subscribed to the object class.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Subscribe Object Class Attributes
— Attributes Out Of Scope †
— Remove Object †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

52

5.8 Subscribe Interaction Class

Specifies an interaction class for which the RTI should notify the federate of sent interactions by invoking
the Receive Interaction † service at the federate.

When an interaction is received by a federate, the received class of the interaction shall be the
interaction’s sent class, if subscribed. Otherwise, the received class is the closest super-class of the sent
class that is subscribed at the time the interaction is received. Only the parameters from the interaction’s
received class and its super-classes will be received.

If a federate subscribes to multiple locations in an interaction class inheritance tree, each relevant
interaction sent can result in at most one received interaction in the subscribing federate.

If the optional passive subscription indicator indicates that this is a passive subscription,
a) the invocation of this service shall not cause the Turn Interactions On † service to be invoked at any

other federate and
b) if this invocation replaces a previous subscription that was active rather than passive, invocation of

this service may cause the Turn Interactions Off † service to be invoked at one or more other
federates.

If the optional passive subscription indicator is not present or indicates that this is an active subscription,
the invocation of this service may cause the Turn Interactions On † service to be invoked at one or more
other federates.

Supplied Arguments
— Interaction class designator
— Optional passive subscription indicator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The interaction class is defined in the FED.

Post-conditions
— The RTI will deliver interactions of the specified interaction class to the federate.

Exceptions
— The interaction class is not defined in the FED.
— Invalid passive subscription designator.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Unsubscribe Interaction Class
— Publish Interaction Class
— Receive Interaction †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

53

— Turn Interactions On †
— Turn Interactions Off †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

54

5.9 Unsubscribe Interaction Class

The Unsubscribe Interaction Class service shall inform the RTI to no longer notify the federate of sent
interactions of the specified interaction class.

Supplied Arguments
— Interaction class designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The interaction class is defined in the FED.
— The federate is subscribed to the interaction class.

Post-conditions
— The RTI shall not deliver interactions of the specified interaction class to the federate.

Exceptions
— The interaction class is not defined in the FED.
— The federate is not subscribed to the interaction class.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Subscribe Interaction Class

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

55

5.10 Start Registration For Object Class †

The Start Registration For Object Class † service shall notify the federate that registration of new object
instances of the specified object class is advised because at least one of the class attributes that the federate
is publishing at this object class is actively subscribed to at the specified object class or at a super-class of
the specified object class by at least one other federate in the federation execution. The federate should
commence with registration of object instances of the specified class. Generation of the Start Registration
For Object Class † service advisory can be controlled using the Enable/Disable Class Relevance Advisory
Switch services (Figure 5).

Supplied Arguments
— Object class designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— At least one of the class attributes that the federate is publishing at the specified object class is

actively subscribed to at the specified object class or at a super-class of the specified object class by
at least one other federate in the federation execution.

Post-conditions
— The federate has been notified of the requirement to begin registering object instances of the

specified object class.

Exceptions
— The object class is not published.
— Federate internal error

Related Services
— Stop Registration For Object Class †
— Publish Object Class
— Subscribe Object Class Attributes
— Enable Class Relevance Advisory Switch
— Disable Class Relevance Advisory Switch

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

56

5.11 Stop Registration For Object Class †

The Stop Registration For Object Class † service shall notify the federate that registration of new object
instances of the specified object class is not advised because none of the class attributes that the federate is
publishing at this object class is actively subscribed to at the specified object class or at a super-class of the
specified object class by any other federate in the federation execution. The federate should stop
registration of new object instances of the specified class. Generation of the Stop Registration For Object
Class † service advisory can be controlled using the Enable/Disable Class Relevance Advisory Switch
services (Figure 5).

Supplied Arguments
— Object class designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— None of the class attributes that the federate is publishing at this object class is actively subscribed

to at the specified object class or at a super-class of the specified object class by any other federate
in the federation execution.

Post-conditions
— The federate has been notified of the requirement to stop registration of object instances of the

specified object class.

Exceptions
— The object class is not published.
— Federate internal error

Related Services
— Start Registration For Object Class †
— Publish Object Class
— Subscribe Object Class Attributes
— Unsubscribe Object Class Attributes
— Enable Class Relevance Advisory Switch
— Disable Class Relevance Advisory Switch

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

57

5.12 Turn Interactions On †

The Turn Interactions On † service shall notify the federate that the specified class of interactions is
relevant because it or a super-class is actively subscribed to by at least one other federate in the federation
execution. The federate should commence with the federation-agreed-upon scheme for sending
interactions of the specified class. Generation of the Turn Interactions On † service advisory can be
controlled using the Enable/Disable Interaction Relevance Advisory Switch services (Figure 7).

Supplied Arguments
— Interaction class designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate is publishing the interaction class.
— Some other federate is actively subscribed to the interaction class or to a super-class of the

interaction class.

Post-conditions
— The federate has been notified that some other federate in the federation execution is subscribed to

the interaction class.

Exceptions
— The interaction class is not published.
— Federate internal error

Related Services
— Turn Interactions Off †
— Publish Interaction Class
— Subscribe Interaction Class
— Send Interaction
— Enable Interaction Relevance Advisory Switch
— Disable Interaction Relevance Advisory Switch

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

58

5.13 Turn Interactions Off †

The Turn Interactions Off † service shall indicate to the federate that the specified class of interactions is
not relevant because it or a super-class is not actively subscribed to by any other federate in the federation
execution. Generation of the Turn Interactions Off † service advisory can be controlled using the
Enable/Disable Interaction Relevance Advisory Switch services (Figure 7).

Supplied Arguments
— Interaction class designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate is publishing the interaction class.
— No other federate is actively subscribed to the interaction class or to a super-class of the interaction

class.

Post-conditions
— The federate has been notified that no other federate in the federation execution is subscribed to the

interaction class.

Exceptions
— The interaction class is not published.
— Federate internal error

Related Services
— Turn Interactions On †
— Publish Interaction Class
— Subscribe Interaction Class
— Unsubscribe Interaction Class
— Enable Interaction Relevance Advisory Switch
— Disable Interaction Relevance Advisory Switch

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

59

6. Object management

6.1 Overview

This group of RTI services shall deal with the registration, modification, and deletion of object instances
and the sending and receipt of interactions.

Object instance discovery is a prime concept in this service group. Object instance O shall be a candidate
discovery class at federate F if federate F is subscribed to either the registered class of O or to a superclass
of the registered class of O. If an object instance has a candidate discovery class at a federate, the
candidate discovery class of the object instance at that federate shall be the object instance’s registered
class, if subscribed to by the federate. Otherwise, the candidate discovery class of the object instance shall
be the closest superclass of the object instances’s registered class to which the federate is subscribed.

A federate discovers an object instance via the Discover Object Instance † service. This service shall be
invoked at a federate F for object instance O when
a) F has not yet discovered O, and
b) there is an instance attribute i of 0 that has a corresponding class attribute i', and

 Another federate (not F) owns i, and
 F is subscribed to i' at O’s candidate discovery class

and, if data distribution management is considered, then

c) the region with which the instance attribute i is associated at the owning federate for update purposes
intersects with the region with which F has associated the instance attribute i’s corresponding class
attribute i' for subscription purposes at the candidate discovery class.

When the Discover Object Instance † service is invoked, the class that is an argument to this service
invocation shall be called the discovered class of the object instance. At the moment of discovery, the
discovered class shall be the same as the candidate discovery class. At this moment of discovery, the
discovered class shall be the registered class of the discovered object instance, if subscribed. If not, it shall
be the closest superclass of the registered class to which F is subscribed. Subsequent to discovery, the
discovered class cannot change. The candidate discovery class may change. As long as an object instance
remains known, however, its candidate discovery class is not of interest.

When the Discover Object Instance † service is invoked, there shall be an instance attribute that is part of
the newly discovered object instance that immediately comes into scope at the discovering federate, both
when data distribution management is used and when it isn't used. An instance attribute of an object
instance shall be in scope for federate F if
a) The object instance is known to the federate,
b) The instance attribute’s corresponding class attribute is subscribed at the known class of the instance

attribute,
c) The instance attribute is owned by another federate,

and if data distribution management is used by both the federate that owns the instance attribute
and federate F, then

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

60

d) The region to which the instance attribute is associated at the owning federate for update purposes
intersects with the region to which the instance attribute’s corresponding class attribute is associated
at the subscribing federate at the known class of the instance attribute.

A federate may also direct the RTI, via the Enable/Disable Attribute Relevance Advisory Switch services,
to indicate that the federate does or does not want the RTI to use the Turn Updates On For Object
Instance † and Turn Updates Off For Object Instance † services to inform the federate when updates to
instance attributes corresponding to this class attribute are relevant to the other federates in the federation
execution.

The following statecharts depict formal representations of the state of an arbitrary object instance, an
arbitrary instance attribute, and the implications of ownership of an arbitrary instance attribute.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

61

PLACE

Figure 8—Object instance (i) known

HERE

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

62

PLACE

Figure 9—Instance attribute (i)

HERE

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

63

PLACE

Figure 10—Implications of ownership of instance attribute (i)

HERE

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

64

6.2 Register Object Instance

The RTI shall create a unique object instance designator and shall link it with an instance of the supplied
object class. All instance attributes of the object instance for which the corresponding class attributes are
currently published by the registering federate shall be set as owned by the registering federate.

If the optional object instance name argument is supplied, that name shall be unique and shall be
associated with the object instance. If the optional object instance name argument is not supplied, the RTI
shall create one when needed (Get Object Instance Name service).

Supplied Arguments
— Object class designator
— Optional object instance name

Returned Arguments
— Object instance designator

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The object class is defined in the FED.
— The federate is publishing the object class.
— If the optional object instance name argument is supplied, that name is unique.

Post-conditions
— The returned object instance designator is associated with the object instance.
— The federate owns the instance attributes that correspond to the currently published class attributes

for the specified object class.
— If the optional object instance name argument is supplied, that name is associated with the object

instance.

Exceptions
— The object class is not defined in FED.
— The federate is not publishing the specified object class.
— The object instance name is not unique.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Publish Object Class
— Discover Object Instance †
— Attribute Ownership Divestiture Notification †
— Get Object Instance Name
— Get Object Instance Handle

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

65

6.3 Discover Object Instance †

The Discover Object Instance † service shall inform the federate to discover an object instance. An object
instance shall be discovered when the instance has been registered by another federate or as the result of a
Local Delete Object Instance service invocation.

Supplied Arguments
— Object instance designator
— Object class designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The object class is published by some federate.
— The federate is subscribed to the object class.
— The instance of the class has been registered by another federate.
— The federate does not know about the object instance with the specified designator.

Post-conditions
— The object instance is known to the federate.

Exceptions
— The federate could not discover the object instance.
— The object class is not known.
— Federate internal error

Related Services
— Register Object Instance
— Subscribe Object Class
— Local Delete Object Instance

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

66

6.4 Update Attribute Values

The Update Attribute Values service shall provide current values to the federation for instance attributes
owned by the federate. The federate shall supply changed instance attribute values as specified in the FED.
This service, coupled with the Reflect Attribute Values † service, shall form the primary data exchange
mechanism supported by the RTI. The service shall return a federation-unique event retraction designator.
An event retraction designator shall be returned only if the federation time argument is supplied.

Supplied Arguments
— Object instance designator
— Set of attribute designator and value pairs
— User-supplied tag
— Optional federation time

Returned Arguments
— Optional event retraction designator

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate owns the instance attributes for which values are provided.
— The attributes are defined in the FED.
— An object instance with the specified designator exists.

Post-conditions
— The RTI will distribute the new instance attribute values to subscribing federates.

Exceptions
— The object instance is not known.
— The specified class attributes are not available attributes of the instance object class.
— The federate does not own the specified instance attributes.
— The federation time is invalid (if optional time argument is supplied).
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Reflect Attribute Values †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

67

6.5 Reflect Attribute Values †

The Reflect Attribute Values † service shall provide the federate with new values for the specified instance
attributes. This service, coupled with the Update Attribute Values service, shall form the primary data
exchange mechanism supported by the RTI.

All the instance attribute/value pairs in an Update Attribute Values service invocation for instance
attributes that have identical transportation and message-ordering types shall be in one corresponding
Reflect Attribute Values † service invocation. This implies that one Update Attribute Values invocation
could result in multiple Reflect Attribute Values † invocations in a subscribing federate. The federation
time and event retraction designator arguments shall be supplied together or not at all.

Supplied Arguments
— Object instance designator
— Set of attribute designator and value pairs
— User-supplied tag
— Optional federation time
— Optional event retraction designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate knows about the object instance with the specified designator.
— The federate is subscribed to the attributes.
— The federate does not own the instance attributes.

Post-conditions
— The new instance attribute values have been supplied to the federate.

Exceptions
— The object instance is not known.
— The attribute designator is not recognized.
— The instance attribute is owned by the federate.
— The federation time is invalid (if optional time argument is supplied).
— Federate internal error

Related Services
— Update Attribute Values
— Time Advance Request
— Next Event Request
— Time Advance Grant †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

68

6.6 Send Interaction

The Send Interaction service shall send an interaction into the federation. The interaction parameters may
be those in the specified class and all super-classes, as defined in the FED. The service shall return a
federation-unique event retraction designator. An event retraction designator shall be returned only if the
federation time argument is supplied.

Supplied Arguments
— Interaction class designator
— Set of interaction parameter designator and value pairs
— User-supplied tag
— Optional federation time

Returned Arguments
— Optional event retraction designator

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate is publishing the interaction class.
— The interaction class is defined in the FED.
— The parameters are defined in the FED.

Post-conditions
— The RTI has received the interaction.

Exceptions
— The federate is not publishing the specified interaction class.
— The interaction class is not defined in FED.
— The interaction parameter is not defined in FED.
— The federation time is invalid (if optional time argument is supplied).
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Time Advance Request
— Next Event Request
— Time Advance Grant †
— Receive Interaction †
— Publish Interaction Class
— Retract

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

69

6.7 Receive Interaction †

The Receive Interaction † service shall provide the federate with a sent interaction. The federation time
and event retraction designator arguments shall be supplied together or not at all.

Supplied Arguments
— Interaction class designator
— Set of interaction parameter designator and value pairs
— User-supplied tag
— Optional federation time
— Optional event retraction designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate is subscribed to the interaction class.

Post-conditions
— The federate has received the interaction.

Exceptions
— The interaction class is not known.
— The interaction parameter is not known.
— The federation time is invalid (if optional time argument is supplied).
— Federate internal error

Related Services
— Retract
— Send Interaction
— Subscribe Interaction Class

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

70

6.8 Delete Object Instance

The Delete Object Instance service shall inform the federation that an object instance with the specified
designator, owned by the federate, is to be removed from the federation execution. Once the object
instance is removed from the federation execution, the designator shall not be reused and all federates
which owned attributes of the object instance no longer own those attributes. The RTI shall use the
Remove Object service to inform the reflecting federates that the object instance has been deleted. The
invoking federate shall own the privilegeToDeleteObject attribute of the specified object instance. The
preferred order type of the sent message representing a Delete Object Instance service invocation shall be
based on the preferred order type of the privilegeToDeleteObject attribute of the specified object instance.
(see clause 8 for more detail). An event retraction designator shall be returned only if the federation time
argument is supplied.

Supplied Arguments
— Object instance designator
— User-supplied tag
— Optional federation time

Returned Arguments
— Optional event retraction designator

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The federate has the privilege to delete the object instance (it owns the privilegeToDeleteObject

instance attribute).

Post-conditions
— The invoking federate may no longer update any previously owned attributes of the specified object

instance.
— The object instance does not exist in the federation execution.

Exceptions
— The federate does not own the delete privilege.
— The object instance is not known.
— The federation time is invalid (if optional time argument is supplied).
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Remove Object Instance †
— Attribute Ownership Divestiture Notification †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

71

6.9 Remove Object Instance †

The Remove Object Instance † service shall inform the federate that an object instance has been deleted
from the federation execution. The federation time and event retraction designator arguments shall be
supplied together or not at all.

Supplied Arguments
— Object instance designator
— User-supplied tag
— Optional federation time
— Optional event retraction designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate knows about the object instance with the specified designator.

Post-conditions
— The federate has been notified to remove the object instance and may not update any previously

owned attributes of the object instance.

Exceptions
— The object instance is not known.
— The federation time is invalid (if optional time argument is supplied).
— Federate internal error

Related Services
— Delete Object Instance

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

72

6.10 Local Delete Object Instance

The Local Delete Object Instance service shall inform the RTI that it shall treat the specified object
instance as if the RTI had never notified the invoking federate to discover the object instance. The object
instance shall not be removed from the federation execution. The federate does not need to own the
privilegeToDeleteObject instance attribute for the object instance.

Supplied Arguments
— Object instance designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The federate owns no attributes of the specified object instance.

Post-conditions
— The object instance does not exist with respect to the invoking federate.
— The object instance may be rediscovered by the invoking federate, at a possibly different class than

previously discovered.

Exceptions
— The object instance is not known.
— The federate owns instance attributes.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Attribute Ownership Divestiture Notification †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

73

6.11 Change Attribute Transportation Type

The transportation type for each attribute of an object instance shall be initialized from the object class
description in the FED. A federate may choose to change the transportation type during execution.
Invoking the Change Attribute Transportation Type service shall change the transportation type for all
future Update Attribute Values service invocations for the specified attributes of the specified object
instance only for the invoking federate.

Supplied Arguments
— Object instance designator
— Set of attribute designators
— Transportation type

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The specified class attributes are available attributes of the known class of the specified object

instance designator.
— The federate owns the instance attributes.

Post-conditions
— The transportation type is changed for the specified instance attributes.

Exceptions
— The object instance is not known.
— The class attribute is not available at the known class of the object instance.
— The federate does not own the specified instance attributes.
— The transportation type is invalid.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Update Attribute Values
— Change Attribute Order Type

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

74

6.12 Change Interaction Transportation Type

The transportation type for each interaction shall be initialized from the interaction class description in
the FED. A federate may choose to change the transportation type during execution. Invoking the Change
Interaction Transportation Type service shall change the transportation type for all future Send
Interaction and Send Interaction with Region service invocations for the specified interaction class for the
invoking federate only.

Supplied Arguments
— Interaction class designator
— Transportation type

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The interaction class is defined in the FED.
— The federate is publishing the interaction class.

Post-conditions
— The transportation type is changed for the specified interaction class.

Exceptions
— The interaction class is not defined in FED.
— The federate is not publishing the interaction class.
— The transportation type is invalid.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Send Interaction
— Change Interaction Order Type

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

75

6.13 Attributes In Scope †

The Attributes In Scope † service shall notify the federate that the specified attributes for the object
instance are in scope for the federate. Subsequent to this service invocation, the RTI may issue Reflect
Attribute Values † service invocations for any of the set of attributes for the object instance. Generation of
the Attributes In Scope † service advisory can be controlled using the Enable/Disable Attribute Scope
Advisory Switch services.

Supplied Arguments
— Object instance designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate knows about the object instance with the specified designator.
— The federate is subscribed to the class attributes.
— The federate does not own the instance attributes.
— If there are regions involved, they overlap (see clause 9).

Post-conditions
— The RTI is allowed to issue Reflect Attribute Values † service invocations for any of the set of

attributes of the object instance.
— The federate is ready to accept Reflect Attribute Values † service invocations for any of the set of

attributes of the object instance.

Exceptions
— The object instance is not known.
— The attribute designator is not recognized.
— Federate internal error

Related Services
— Attributes Out Of Scope †
— Reflect Attribute Values †
— Enable Attribute Scope Advisory Switch
— Disable Attribute Scope Advisory Switch

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

76

6.14 Attributes Out Of Scope †

The Attributes Out Of Scope † service shall notify the federate that the specified attributes of the object
instance are out of scope for the federate. The RTI shall guarantee not to issue any subsequent Reflect
Attribute Values † service invocations for any of the set of attributes for the object instance. Generation of
the Attributes Out Of Scope † service advisory can be controlled using the Enable/Disable Attribute Scope
Advisory Switch services.

Supplied Arguments
— Object instance designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— At least one of the following is not true:

— The federate knows about the object instance with the specified designator.
— The federate is subscribed to the class attributes.
— The federate does not own the instance attributes.
— If there are regions involved, they overlap (see clause 9).

Post-conditions
— The RTI guarantees not to issue Reflect Attribute Values † service invocations for any of the set of

attributes of the object instance.

Exceptions
— The object instance is not known.
— The attribute designator is not recognized.
— Federate internal error

Related Services
— Attributes In Scope †
— Reflect Attribute Values †
— Enable Attribute Scope Advisory Switch
— Disable Attribute Scope Advisory Switch

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

77

6.15 Request Attribute Value Update

The Request Attribute Value Update service shall be used to stimulate the update of values of specified
attributes. When this service is used, the RTI shall solicit the current values of the specified attributes
from their owners using the Provide Attribute Value Update † service. When an object class is specified,
the RTI shall solicit the specified attributes for all the object instances of that class. When an object
instance designator is specified, the RTI shall solicit the specified attributes for the particular object
instance. The federation time of any resulting Reflect Attribute Values † service invocations is determined
by the updating federate.

Supplied Arguments
— Object instance designator or object class designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists (when first argument is an object instance

designator).
— The specified class attributes are available attributes of the known class of the specified object

instance designator (when first argument is an object instance designator).
— The specified object class is defined in the FED (when first argument is an object class).
— The specified class attributes are available attributes of the specified object class (when first

argument is an object class).

Post-conditions
— The request for the updated attribute values has been received by the RTI.

Exceptions
— The object instance is invalid.
— The object class is not defined in FED.
— The class attribute is not available at the known class of the object instance.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Provide Attribute Value Update †
— Update Attribute Values

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

78

6.16 Provide Attribute Value Update †

The Provide Attribute Value Update † service shall request the current values for attributes owned by the
federate for a given object instance. The federate shall respond to the Provide Attribute Value Update †
service with an invocation of the Update Attribute Values service to provide the requested instance
attribute values to the federation.

Supplied Arguments
— Object instance designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate knows about the object instance with the specified designator.
— The federate owns the specified instance attributes.

Post-conditions
— The federate has been notified to provide updates of the specified instance attribute values.

Exceptions
— The object instance is not known.
— The attribute designator is not recognized.
— The instance attribute is not owned.
— Federate internal error

Related Services
— Request Attribute Value Update
— Update Attribute Values

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

79

6.17 Turn Updates On For Object Instance †

The Turn Updates On For Object Instance † service shall indicate to the federate that the values of the
specified attributes of the specified object instance are required somewhere in the federation execution.
The federate shall commence with the federation-agreed-upon update scheme for the specified instance
attributes. Generation of the Turn Updates On For Object Instance † service advisory can be controlled
using the Enable/Disable Attribute Relevance Advisory Switch services.

Supplied Arguments
— Object instance designator
— Set of attribute designators type

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate owns the instance attributes.
— The federate knows about the object instance with the specified designator.
— Some other federate in the execution is actively subscribed to the attributes of the object class.

Post-conditions
— The federate has been notified by another federate in the federation execution of the requirement for

updates of the specified attributes of the specified object instance.

Exceptions
— The object instance is not known.
— The instance attribute is not owned.
— Federate internal error

Related Services
— Turn Updates Off For Object Instance †
— Publish Object Class
— Subscribe Object Class Attributes With Region
— Update Attribute Values
— Enable Attribute Relevance Advisory Switch
— Disable Attribute Relevance Advisory Switch

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

80

6.18 Turn Updates Off For Object Instance †

The Turn Updates Off For Object Instance † service shall indicate to the federate that the values of the
specified attributes of the object instance are not required anywhere in the federation execution.
Generation of the Turn Updates Off For Object Instance † service advisory can be controlled using the
Enable/Disable Attribute Relevance Advisory Switch services.

Supplied Arguments
— Object instance designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate owns the specified instance attributes.
— The federate knows about the object instance with the specified designator.
— No other federate is actively subscribed to the attributes of the object class.

Post-conditions
— The federate has been notified by another federate in the federation execution that updates of the

specified attributes of the specified object instance are not required.

Exceptions
— The object instance is not known.
— The attribute is not owned.
— Federate internal error

Related Services
— Turn Updates On For Object Instance †
— Publish Object Class
— Subscribe Object Class Attributes With Region
— Unsubscribe Object Class Attributes With Region
— Update Attribute Values
— Enable Attribute Relevance Switch
— Disable Attribute Relevance Switch

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

81

7. Ownership management

7.1 Overview

Ownership management shall be used by federates and the RTI to transfer ownership of instance attributes
among federates. The ability to transfer ownership of instance attributes among federates shall be required
to support the cooperative modeling of a given object instance across a federation. Only the federate that
owns an instance attribute
— May invoke the Update Attribute Values service to provide a new value for that instance attribute,
— Can receive invocations of the Provide Attribute Value Update † service for that instance attribute,

and
— Can receive invocations of the Turn Updates On For Object Instance † and Turn Updates Off For

Object Instance † services pertaining to that instance attribute.

Figure 11 depicts the ways that ownership of a single instance attribute can be established from the
viewpoint of a given federate. This diagram is complete insofar as all transitions shown represent legal
operations, and transitions that are not shown represent illegal operations. Illegal operations shall
generate exceptions if invoked.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

82

PLACE

Figure 11—Establishing ownership of instance attribute (i)

HERE

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

83

An instance attribute shall not be owned by more than one federate at any given time, and an instance
attribute may be unowned by all federates. From a given federate’s perspective, every instance attribute
shall be either owned or unowned. Hence, within the state machine depicted in Figure 11, the owned and
unowned states are exclusive.

Upon registration of an object instance, the registering federate shall own all instance attributes of that
object instance for which the federate is publishing the corresponding class attributes at the registered
class of the object instance. All other instance attributes of that object instance shall be unowned by all
federates. Upon discovery of an object instance, the discovering federate shall not own any instance
attributes of that object instance. If a federate does not own an instance attribute, it shall not own that
instance attribute until it has received an Attribute Ownership Acquisition Notification † (AOAN †) service
invocation for it.

Within the owned state there shall be two parallel state machines for divestiture and release, meaning that
an instance attribute is in both of these machines simultaneously. Each of these state machines shall have
two exclusive states. An instance attribute that is owned is either in the process of being divested or not in
the process of being divested. Simultaneously, a request to release it has either been received by its owning
federate or not. Upon becoming owned, an instance attribute is initially not in the process of being
divested and, simultaneously, no request to release it has yet been received. Because the divestiture and
release state machines of Figure 11 operate in parallel, a federate may, for example, respond to a Request
Attribute Ownership Release † service invocation with an Unconditional Attribute Ownership Divestiture
or Negotiated Attribute Ownership Divestiture service invocation.

Ownership of an instance attribute can be transferred from one federate to another either by the owning
federate requesting to divest itself of the instance attribute or by a non-owning federate requesting to
acquire it. Whether an instance attribute changes ownership as a result of being divested by its owner or
acquired by a non-owner, however, the instance attribute shall change ownership only as a result of
explicit service invocations by the owning and acquiring federates. Ownership shall not be taken away
from, nor shall it be given to, a federate without the federate’s consent.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

84

7.1.1 Ownership and publication

The ownership of an instance attribute is closely related to whether that instance attribute’s corresponding
class attribute is published at the known class of the instance attribute. This means that the ownership
state machine in Figure 11, which operates in parallel with the publication state machine in Figure 6, also
shares interdependencies with the publication state machine. A federate shall be publishing a class
attribute at the known class of an object instance in order to own the corresponding instance attribute of
that object instance. This means that
— A federate shall be publishing a class attribute at the known class of an object instance before it can

become the owner of the corresponding instance attribute of that object instance. This
interdependency between ownership and publication is expressed in Figure 11 by the Not Able to
Acquire state, the [in “Unpublished (i)“] and [in “Published (i)”] transitions in the Unowned state,
and the conditional transition into the Owned and Unowned states from the start state.

— if the federate that owns an instance attribute stops publishing the corresponding class attribute at
the known class of the instance attribute, the instance attribute shall immediately become unowned.
This interdependency between ownership and publication is expressed in Figure 11 by the
transition from the Owned to the Unowned state that is labeled [in “Unpublished (i)”]. As depicted
by the guard on the transition from the Published to the Unpublished state in the publication state
machine shown in Figure 6, a federate shall not stop publication of a class attribute at a given class
if there is an object instance that has that class as its known class and that has a corresponding
instance attribute that is in either the Acquisition Pending or Willing to Acquire state at that
federate. That is, a federate shall not stop publishing a class attribute at a given class if there is an
object instance that has that class as its known class and that has a corresponding instance attribute
for which the federate has
a) Invoked the Attribute Ownership Acquisition service, but has not yet received an invocation of

either the Confirm Attribute Ownership Acquisition Cancellation † service or the Attribute
Ownership Acquisition Notification † service, or

b) Invoked the Attribute Ownership Acquisition If Available service, but has not yet received an
invocation of the Attribute Ownership Unavailable † service, received an invocation of the
Attribute Ownership Acquisition Notification † service, or invoked the Attribute Ownership
Acquisition service [after which condition (a) (above) applies].

7.1.2 Ownership transfer

An instance attribute that is successfully divested shall become unowned by the divesting federate. If an
instance attribute is unowned, its corresponding class attribute at the known class of the instance attribute
may be either published or unpublished. If the class attribute is published at that class, the federate shall
be eligible to acquire the corresponding instance attribute and it may be offered ownership of that instance
attribute by the RTI via the Request Attribute Ownership Assumption † service. There are five ways in
which an owning federate may attempt to divest itself of an instance attribute and two ways in which a
non-owning federate may attempt to acquire one.

7.1.2.1 Divestiture

The five actions that a federate could take to cause an instance attribute that it owns to become unowned
are

a) The federate can invoke the Unconditional Attribute Ownership Divestiture service, in which case the
instance attribute shall immediately become unowned by that federate and, in fact, by all federates.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

85

b) The federate can invoke the Negotiated Attribute Ownership Divestiture service, which notifies the
RTI that the federate wishes to divest itself of the instance attribute providing that the RTI can locate
a federate that is willing to own the instance attribute. If any federates are in the process of trying to
acquire the instance attribute, these federates are willing to own the instance attribute. The RTI can
try to identify other federates that are willing to own the instance attribute by invoking the Request
Attribute Ownership Assumption † service at all federates that are not in the process of trying to
acquire the instance attribute, but that are publishing the instance attribute’s corresponding class
attribute at the known class of the instance attribute. If the RTI is able to locate a federate that is
willing to acquire the instance attribute, the RTI shall notify the divesting federate that it no longer
owns the instance attribute by invoking the Attribute Ownership Divestiture Notification † (AODN †)
service at the divesting federate.

c) The federate can invoke the Attribute Ownership Release Response service (in response to having
received an invocation of the Request Attribute Ownership Release † service for the designated
instance attribute). This service invocation shall have a return argument that the RTI shall use to
indicate the set of instance attributes that have been successfully released. So, if the Attribute
Ownership Release Response service returns with the designated instance attribute among the set of
released instance attributes, the instance attribute shall be unowned. [In Figure 11, the transition from
the owned to the unowned state via an Attribute Ownership Release Response service invocation is
labeled Release Response (ret: success)]. This is a convenience notation indicating that the instance
attribute in question is a member of the returned instance attribute set.

d) The federate can stop publishing the instance attribute’s corresponding class attribute at the known
class of the instance attribute, which shall result in the instance attribute immediately becoming
unowned by that federate and, in fact, by all federates.

e) The federate can resign from the federation execution. When a federate successfully resigns from the
federation execution, all of the instance attributes that are owned by that federate shall become
unowned by that federate and, in fact, by all federates. This transition is not depicted in Figure 11
because it occurs at a federate, rather than an instance attribute, level of operation.

Of the five ways a federate may divest itself of an instance attribute, only the Negotiated Attribute
Ownership Divestiture service may be canceled. A Negotiated Attribute Ownership Divestiture service
invocation shall remain pending until either the instance attribute becomes unowned or the divesting
federate cancels the divestiture request by invoking the Cancel Negotiated Attribute Ownership
Divestiture service. Cancellation of the divestiture shall be guaranteed to be successful.

Of the five ways a federate may divest itself of an instance attribute, three ways (invocation of the
Unconditional Attribute Ownership Divestiture service, a request to stop publication of the instance
attribute’s corresponding class attribute at the known class of the instance attribute, and invocation of the
Resign Federation Execution service) shall result in the instance attribute becoming unowned by all
federates. When either the Negotiated Attribute Ownership Divestiture or the Attribute Ownership
Release Response service is used, the RTI shall guarantee that immediately after the owning federate loses
ownership of the instance attribute, another federate shall be granted ownership of it. For purposes of
determining an instance attribute’s scope, the instance attribute may be considered to be continuously
owned during its transfer of ownership from the divesting federate to the acquiring federate via either the
Negotiated Attribute Ownership Divestiture or the Attribute Ownership Release Response service.

7.1.2.2 Acquisition

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

86

There shall be two ways for a federate that is publishing a class attribute at a given class to acquire a
corresponding instance attribute of an object that has that class as its known class.

a) The federate may invoke the Attribute Ownership Acquisition service, which shall inform the RTI
that it shall invoke the Request Attribute Ownership Release † service at the federate that owns the
designated instance attribute.

b) The federate may invoke the Attribute Ownership Acquisition If Available service, which shall inform
the RTI that it wants to acquire the designated instance attribute only if it is already unowned by all
federates or if it is in the process of being divested by its owner.

The first method of acquisition can be thought of as an intrusive acquisition, because the RTI will notify
the federate that owns the instance attribute that another federate wants to acquire it and request that the
owning federate release the instance attribute for acquisition by the requesting federate. The second
method of acquisition can be thought of as a non-intrusive acquisition because the RTI will not notify the
owning federate of the request to acquire the instance attribute. The Attribute Ownership Acquisition
service can also be thought of as taking precedence over the Attribute Ownership Acquisition If Available
service. A federate that has invoked the Attribute Ownership Acquisition service and is in the Acquisition
Pending state shall not invoke the Attribute Ownership Acquisition If Available service. If a federate that
has invoked the Attribute Ownership Acquisition If Available service and is in the Willing to Acquire
state invokes the Attribute Ownership Acquisition service, that federate shall enter the Acquisition
Pending state.

An Attribute Ownership Acquisition service invocation may be explicitly canceled, but an Attribute
Ownership Acquisition If Available service invocation shall not be explicitly cancelled. When a federate
invokes the Attribute Ownership Acquisition If Available service, either the Attribute Ownership
Acquisition Notification † service or the Attribute Ownership Unavailable † service shall be invoked at
that federate in response. (If the instance attribute is unowned by all federates or in the process of being
divested by its owner, the Attribute Ownership Acquisition Notification † service shall be invoked.
Otherwise, the Attribute Ownership Unavailable † service shall be invoked.)

When a federate invokes the Attribute Ownership Acquisition service invocation, on the other hand, this
request shall remain pending until either the instance attribute is acquired (as indicated by an invocation
of the Attribute Ownership Acquisition Notification † service) or the federate successfully cancels the
acquisition request. A federate may attempt to cancel the acquisition request by invoking the Cancel
Attribute Ownership Acquisition service. The Cancel Attribute Ownership Acquisition service is not
guaranteed to be successful. If it is successful, the RTI shall indicate this success to the canceling federate
by invoking the Confirm Attribute Ownership Acquisition Cancellation † service. If it fails, the RTI shall
indicate this failure to the canceling federate by invoking the Attribute Ownership Acquisition
Notification † service, thereby granting ownership of the instance attribute to the federate.

An Attribute Ownership Acquisition service invocation shall override an Attribute Ownership Acquisition
If Available service invocation. This means that a federate that has invoked the Attribute Ownership
Acquisition If Available service may, before it receives an invocation of either the Attribute Ownership
Acquisition Notification † service or the Attribute Ownership Unavailable † service, invoke the Attribute
Ownership Acquisition service. In this case, the Attribute Ownership Acquisition If Available service
request shall be implicitly canceled and the Attribute Ownership Acquisition service request shall remain
pending until either the instance attribute is acquired or the federate successfully cancels the acquisition
request. A federate that has invoked the Attribute Ownership Acquisition service, but has not yet received
an invocation of either the Attribute Ownership Acquisition Notification † service or the Confirm Attribute

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

87

Ownership Acquisition Cancellation † service, shall not invoke the Attribute Ownership Acquisition If
Available service.

7.1.3 PriviledgeToDeleteObject

All object classes shall have an available attribute called privilegeToDeleteObject. As with all other
available attributes, a federate shall be publishing the privilegeToDeleteObject class attribute at the
known class of an object instance to own the corresponding privilegeToDeleteObject instance attribute
that is part of that object instance, and ownership of privilegeToDeleteObject instance attributes can be
transferred among federates. Ownership management services for privilegeToDeleteObject instance
attributes shall be the same as they are for all other instance attributes. The reason that a federate may
want to own the privilegeToDeleteObject instance attribute, however, is different. Ownership of a typical
instance attribute shall give a federate the privilege to provide new values for that instance attribute.
Ownership of the privilegeToDeleteObject instance attribute of an object instance shall give the federate
the additional right to delete that object instance from the federation execution.

7.1.4 User-supplied tags

Several of the ownership management services take a user-supplied tag as argument. These arguments
shall be provided as a mechanism for conveying information between federates that could be used to
implement priority or other schemes. While the content and use of these tags are outside of the scope of
this specification, the RTI shall pass these user-supplied tags from federates that are trying to acquire an
instance attribute to the federate that owns the instance attribute, and from the federate that is trying to
divest itself of an instance attribute to the federates that are able to acquire the instance attribute. In
particular,
— The user-supplied tag present in the Negotiated Attribute Ownership Divestiture service shall be

present in any resulting Request Attribute Ownership Assumption † service invocations.
— The user-supplied tag present in the Request Attribute Ownership Acquisition service shall be

present in any resulting Request Attribute Ownership Release † service invocations.

7.1.5 Sets of attribute designators

While many of the ownership management services take a set of instance attributes as an argument, the
RTI treats ownership management operations on a per-instance-attribute basis. The fact that some
ownership management service invocations take sets of instance attributes as an argument is a feature
provided to federate designers for convenience. A single request with an instance attribute set as an
argument can result in multiple responses pertaining to disjoint subsets of those instance attributes. For
example, a single Negotiated Attribute Ownership Divestiture that has a set of instance attributes as an
argument could result in multiple Attribute Ownership Divestiture Notification † service invocations. If
one instance attribute in the set of instance attributes provided as an argument to an ownership
management service invocation violates the preconditions of the service, an exception shall be generated
and the entire service invocation shall fail.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

88

7.2 Unconditional Attribute Ownership Divestiture

The Unconditional Attribute Ownership Divestiture service shall notify the RTI that the federate no
longer wants to own the specified instance attributes of the specified object. This service shall immediately
relieve the divesting federate of the ownership, causing the instance attribute(s) to go (possibly
temporarily) into the unowned state, without regard to the existence of an accepting federate. Completion
of the invocation of this service can be viewed as an implied invocation of the Attribute Ownership
Divestiture Notification † service for all of the specified instance attributes.

Supplied Arguments
— Object instance designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The federate owns the specified instance attributes.

Post-conditions
— The federate no longer owns the specified instance attributes.

Exceptions
— The object instance is not known.
— The class attribute is not available at the known class of the object instance.
— The federate does not own the instance attribute.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Attribute Ownership Divestiture Notification †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

89

7.3 Negotiated Attribute Ownership Divestiture

The Negotiated Attribute Ownership Divestiture service shall notify the RTI that the federate no longer
wants to own the specified instance attributes of the specified object instance. Ownership shall be
transferred only if some federate(s) accepts. The invoking federate shall continue its update responsibility
for the specified instance attributes until it receives permission to stop via the Attribute Ownership
Divestiture Notification † service. The federate may receive one or more Attribute Ownership Divestiture
Notification † invocations for each invocation of this service since different federates may wish to become
the owner of different instance attributes.

A request to divest ownership shall remain pending until either the request is granted (via the Attribute
Ownership Divestiture Notification † service), the requesting federate successfully cancels the request (via
the Cancel Negotiated Attribute Ownership Divestiture † service), or the federate divests itself of
ownership by other means (e.g., the Attribute Ownership Release Response or Unpublish service). A
second negotiated divestiture for an instance attribute already in the process of a negotiated divestiture
shall not be legal.

Supplied Arguments
— Object instance designator
— Set of attribute designators
— User-supplied tag

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The federate owns the specified instance attributes.
— The specified instance attributes are not in the negotiated divestiture process.

Post-conditions
— No change has occurred in instance attribute ownership.
— The RTI has been notified of the federate's request to divest ownership of the specified instance

attributes.

Exceptions
— The object instance is not known.
— The class attribute is not available at the known class of the object instance.
— The federate does not own the instance attribute.
— The instance attribute is already in the negotiated divestiture process.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Request Attribute Ownership Assumption †
— Attribute Ownership Divestiture Notification †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

90

— Attribute Ownership Acquisition Notification †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

91

7.4 Request Attribute Ownership Assumption †

The Request Attribute Ownership Assumption † service shall inform the federate that the specified
instance attributes are available for transfer of ownership to the federate. The RTI shall supply an object
instance designator and set of attribute designators. The federate may return a subset of the supplied
attribute designators for which it is willing to assume ownership via the Attribute Ownership Acquisition
service or via the Request Attribute Ownership If Available service. In the case that the supplied instance
attributes are unowned as a result of a federate invoking the Unconditional Attribute Ownership
Divestiture service, the divesting federate shall not be asked to assume ownership.

Supplied Arguments
— Object instance designator
— Set of attribute designators
— User-supplied tag

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate knows about the object instance with the specified designator.
— The federate is publishing the corresponding class attributes at the known class of the specified

object instance.
— The federate does not own the specified instance attributes.

Post-conditions
— Instance attribute ownership has not changed.
— The federate has been informed of the set of instance attributes for which the RTI is requesting that

the federate assume ownership.

Exceptions
— The object instance is not known.
— The attribute designator is not recognized.
— The federate already owns the instance attribute.
— The federate is not publishing the class attribute at the known class of the object instance.
— Federate internal error

Related Services
— Unconditional Attribute Ownership Divestiture
— Negotiated Attribute Ownership Divestiture
— Attribute Ownership Divestiture Notification †
— Attribute Ownership Acquisition Notification †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

92

7.5 Attribute Ownership Divestiture Notification †

The Attribute Ownership Divestiture Notification † service shall notify the federate that it no longer owns
the specified set of instance attributes. Upon this notification, the federate shall stop updating the specified
instance attribute values. The federate may receive multiple notifications for a single invocation of the
Negotiated Attribute Ownership Divestiture service since different federates may wish to become the
owner of different instance attributes.

Supplied Arguments
— Object instance designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate knows about the object instance with the specified designator.
— The federate owns the specified instance attributes.
— The federate has previously attempted to divest ownership of the specified instance attributes and

has not subsequently canceled that request.

Post-conditions
— The federate does not own the specified instance attributes.

Exceptions
— The object instance is not known.
— The attribute designator is not recognized.
— The federate does not own the instance attribute.
— The federate had not previously attempted to divest ownership of the instance attribute.
— Federate internal error

Related Services
— Negotiated Attribute Ownership Divestiture
— Request Attribute Ownership Assumption †
— Attribute Ownership Acquisition Notification †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

93

7.6 Attribute Ownership Acquisition Notification †

The Attribute Ownership Acquisition Notification † service shall notify the federate that it now owns the
specified set of instance attributes. The federate may then begin updating those instance attribute values.
The federate may receive multiple notifications for a single invocation of the Attribute Ownership
Acquisition service since the federate may wish to become the owner of instance attributes owned by
different federates.

Supplied Arguments
— Object instance designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate knows about the object instance with the specified designator.
— The federate is publishing the corresponding class attributes at the known class of the specified

object instance.
— A federate has previously attempted to acquire ownership of the specified instance attributes.
— The specified instance attributes are not owned by any federate in the federation execution.

Post-conditions
— The federate owns the specified instance attributes.
— The federate may stop publishing the corresponding class attributes at the known class of the

specified object instance.

Exceptions
— The object instance is not known.
— The attribute designator is not recognized.
— The federate had not previously attempted to acquire ownership of the instance attribute.
— The federate already owns the instance attribute.
— The federate is not publishing the class attribute at the known class of the object instance.
— Federate internal error

Related Services
— Unconditional Attribute Ownership Divestiture
— Negotiated Attribute Ownership Divestiture
— Request Attribute Ownership Assumption †
— Attribute Ownership Divestiture Notification †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

94

7.7 Attribute Ownership Acquisition

The Attribute Ownership Acquisition service shall request the ownership of the specified instance
attributes of the specified object instance. If a specified instance attribute is owned by another federate, the
RTI shall invoke the Request Attribute Ownership Release † service for that instance attribute at the
owning federate. The federate may receive one or more Attribute Ownership Acquisition Notification †
invocations for each invocation of this service.

A request to acquire ownership shall remain pending until either the request is granted (via the Attribute
Ownership Acquisition Notification † service) or the requesting federate successfully cancels the request
(via the Cancel Attribute Ownership Acquisition and Confirm Attribute Ownership Acquisition
Cancellation † services).

Supplied Arguments
— Object instance designator
— Set of attribute designators
— User-supplied tag

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The federate is publishing the corresponding class attributes at the known class of the specified

object instance.
— The federate does not own the specified instance attributes.

Post-conditions
— The RTI has been informed of the federate’s request to acquire ownership of the specified instance

attributes.
— The federate shall not stop publishing the corresponding class attributes at the known class of the

specified object instance.

Exceptions
— The object instance is not known.
— The federate is not publishing the object class.
— The class attribute is not available at the known class of the object instance.
— The federate is not publishing the class attribute at the known class of the object instance.
— The federate already owns the instance attribute.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Request Attribute Ownership Release †
— Attribute Ownership Acquisition Notification †
— Cancel Attribute Ownership Acquisition

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

95

— Cancel Attribute Ownership Acquisition Confirmation

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

96

7.8 Attribute Ownership Acquisition If Available

The Attribute Ownership Acquisition If Available service shall request the ownership of the specified
instance attributes of the specified object instance only if the instance attribute is unowned by all federates
or it is in the process of being divested by its owner. If a specified instance attribute is owned by another
federate, the RTI shall not invoke the Request Attribute Ownership Release † service for that instance
attribute at the owning federate. The federate shall receive either an Attribute Ownership Acquisition
Notification † or an Attribute Ownership Unavailable † invocation for each of the specified instance
attributes.

Supplied Arguments
— Object instance designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The federate is publishing the corresponding class attributes at the known class of the specified

object instance.
— The federate does not own the specified instance attributes.
— For each of the specified instance attributes, it is not the case that the federate has invoked the

Attribute Ownership Acquisition service, but has not yet received an invocation of either the
Confirm Attribute Ownership Acquisition Cancellation † service or the Attribute Ownership
Acquisition Notification † service.

Post-conditions
— The RTI has been informed of the federate’s request to acquire ownership of the specified instance

attributes. The federate shall not stop publishing the corresponding class attributes at the known
class of the specified object instance.

Exceptions
— The object instance is not known.
— The federate is not publishing the object class.
— The class attribute is not available at the known class of the object instance.
— The federate is not publishing the class attribute at the known class of the object instance.
— The federate already owns the instance attribute.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error
— The federate is already acquiring the instance attribute.

Related Services
— Attribute Ownership Acquisition Notification †
— Attribute Ownership Unavailable †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

97

7.9 Attribute Ownership Unavailable †

The Attribute Ownership Unavailable † service shall inform the federate that the specified instance
attributes were not available for ownership acquisition.

Supplied Arguments
— Object instance designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate knows about the object instance with the specified designator.
— The federate had requested ownership acquisition (if available) for the specified instance attributes.
— The federate does not own the specified instance attributes.

Post-conditions
— The federate has been informed that the specified instance attributes were not available for

ownership acquisition.
— The federate may stop publishing the corresponding class attributes at the known class of the

specified object instance.

Exceptions
— The object instance is not known.
— The attribute designator is not recognized.
— The federate already owns the instance attribute.
— The federate had not requested ownership acquisition (if available) for the instance attribute.
— Federate internal error

Related Services
— Attribute Ownership Acquisition If Available

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

98

7.10 Request Attribute Ownership Release †

The Request Attribute Ownership Release † service shall request that the federate release ownership of the
specified instance attributes of the specified object instance. The Request Attribute Ownership Release †
service shall provide an object instance designator and set of attribute designators and shall be invoked
only as the result of an Attribute Ownership Acquisition service invocation by some other federate. The
federate may return the subset of the supplied instance attributes for which it is willing to release
ownership via the Attribute Ownership Release Response service, the Unconditional Attribute Ownership
Divestiture service, or the Negotiated Attribute Ownership Divestiture service.

Supplied Arguments
— Object instance designator
— Set of attribute designators
— User-supplied tag

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate knows about the object instance with the specified designator.
— The federate owns the specified instance attributes.

Post-conditions
— The federate has been informed of the set of instance attributes for which the RTI is requesting the

federate to release ownership.

Exceptions
— The object instance is not known.
— The attribute designator is not recognized.
— The federate does not own the instance attribute.
— Federate internal error

Related Services
— Attribute Ownership Acquisition
— Attribute Ownership Acquisition Notification †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

99

7.11 Attribute Ownership Release Response

The Attribute Ownership Release Response service shall notify the RTI that the federate is willing to
release ownership of the specified instance attributes for the specified object instance. The federate shall
use this service to provide an answer to the question posed as a result of the RTI invocation of Request
Attribute Ownership Release †. The returned argument shall indicate the instance attributes for which
ownership was actually released. Completion of the invocation of this service can be viewed as an implied
Attribute Ownership Divestiture Notification † invocation for all of the instance attributes in the returned
argument.

Supplied Arguments
— Object instance designator
— Set of attribute designators for which the federate is willing to release ownership

Returned Arguments
— Set of attribute designators for which ownership is actually released

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The federate owns the specified instance attributes.
— The federate has been asked to release the specified instance attributes.

Post-conditions
— Ownership is released for the instance attributes in the returned parameter set.

Exceptions
— The object instance is not known.
— The class attribute is not available at the known class of the object instance.
— The federate does not own the instance attribute.
— The federate had not previously been asked to release ownership of the instance attribute.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Request Attribute Ownership Release †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

100

7.12 Cancel Negotiated Attribute Ownership Divestiture

The Cancel Negotiated Attribute Ownership Divestiture service shall notify the RTI that the federate no
longer wants to divest ownership of the specified instance attributes.

Supplied Arguments
— Object instance designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The federate owns the specified instance attributes.
— The specified instance attributes were candidates for divestiture.

Post-conditions
— The specified instance attributes are unavailable for divestiture.

Exceptions
— The object instance is not known.
— The class attribute is not available at the known class of the object instance.
— The federate does not own the instance attribute.
— The instance attribute was not a candidate for divestiture.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Negotiated Attribute Ownership Divestiture

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

101

7.13 Cancel Attribute Ownership Acquisition

The Cancel Attribute Ownership Acquisition service shall notify the RTI that the federate no longer wants
to acquire ownership of the specified instance attributes.

This service shall always receive one of two replies from the RTI. The first form of reply, Cancel Attribute
Ownership Acquisition Confirmation, shall indicate that the request to acquire ownership of the specified
instance attributes has been successfully canceled. The second form of reply, Attribute Ownership
Acquisition Notification †, shall indicate that the request to acquire ownership of the specified instance
attributes was not canceled in time and that the federate has acquired ownership of the instance attributes.

The federate may receive both forms of reply in response to a single Cancel Attribute Ownership
Acquisition service invocation since the cancellation may succeed for some of the supplied instance
attributes and fail for others.

This service shall be used only to cancel requests to acquire ownership of instance attributes that were
made via the Attribute Ownership Acquisition service. Requests made via the Attribute Ownership
Acquisition If Available service shall not be explicitly canceled. They may, however, be overridden by an
invocation of the Attribute Ownership Acquisition service.

Supplied Arguments
— Object instance designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The federate does not own the specified instance attributes.
— The federate is attempting to acquire ownership of the specified instance attributes.

Post-conditions
— The RTI has been notified that federate no longer wants to acquire ownership of the specified

instance attributes.

Exceptions
— The object instance is not known.
— The class attribute is not available at the known class of the object instance.
— The federate already owns the instance attribute.
— The federate was not attempting to acquire ownership of the instance attribute.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Attribute Ownership Acquisition
— Attribute Ownership Acquisition Notification †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

102

— Cancel Attribute Ownership Acquisition Confirmation

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

103

7.14 Confirm Attribute Ownership Acquisition Cancellation †

The Confirm Attribute Ownership Acquisition Cancellation † service shall inform the federate that the
specified instance attributes are no longer candidates for ownership acquisition.

Supplied Arguments
— Object instance designator
— Set of attribute designators

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate knows about the object instance with the specified designator.
— The federate had attempted to cancel an ownership acquisition request for the specified instance

attributes.
— The federate does not own the specified instance attributes.

Post-conditions
— The specified instance attributes are no longer candidates for acquisition by the federate.
— The federate may stop publishing the corresponding class attributes at the known class of the

specified object instance.

Exceptions
— The object instance is not known.
— The attribute designator is not recognized.
— The federate already owns the instance attribute.
— The federate had not canceled an ownership acquisition request for the instance attribute.
— Federate internal error

Related Services
— Cancel Attribute Ownership Acquisition

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

104

7.15 Query Attribute Ownership

The Query Attribute Ownership service shall be used to determine the owner of the specified instance
attribute. The RTI shall provide the instance attribute owner information via the Inform Attribute
Ownership † service invocation.

Supplied Arguments
— Object instance designator
— Attribute designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The corresponding class attribute is an available attribute of the known class of the specified object

instance.

Post-conditions
— The request for instance attribute ownership information has been received by the RTI.

Exceptions
— The object instance is not known.
— The class attribute is not available at the known class of the object instance.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Inform Attribute Ownership †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

105

7.16 Inform Attribute Ownership †

The Inform Attribute Ownership † service shall be used to provide ownership information for the specified
instance attribute. This service shall be invoked by the RTI in response to a Query Attribute Ownership
service invocation by a federate. This service shall provide the federate a designator of the instance
attribute owner (if the instance attribute is owned) or an indication that the instance attribute is available
for acquisition.

Supplied Arguments
— Object instance designator
— Attribute designator
— Ownership designator (could be a federate, MOM, or unowned)

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate knows about the object instance with the specified designator.
— The corresponding class attribute is an available attribute of the known class of the specified object

instance.
— The federate has previously invoked the Query Attribute Ownership service and has not yet

received an Inform Attribute Ownership † service invocation in response.

Post-conditions
— The federate has been informed of the instance attribute ownership.

Exceptions
— The object instance is not known.
— The attribute designator is not recognized.
— Federate internal error

Related Services
— Query Attribute Ownership

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

106

7.17 Is Attribute Owned By Federate

The Is Attribute Owned By Federate service shall be used to determine if the specified instance attribute of
the specified object instance designator is owned by the invoking federate. The service shall return a
Boolean value indicating ownership status of the specified instance attribute.

Supplied Arguments
— Object instance designator
— Attribute designator

Returned Arguments
— Instance attribute ownership indicator

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The corresponding class attribute is an available attribute of the known class of the specified object

instance.

Post-conditions
— The federate has the requested ownership information.

Exceptions
— The object instance is not known.
— The class attribute is not available at the known class of the object instance.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— None

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

107

8. Time management

8.1 Overview

Time in the system being modeled shall be represented in the federation as points along a federation time
axis. Each federate may advance along the axis during the course of the execution. Such federate time
advances may be constrained by the progress of other federates or unconstrained.

Time management is concerned with the mechanisms for controlling the advancement of each federate
along the federation time axis. In general, time advances shall be coordinated with object management
services so that information is delivered to federates in a causally correct and ordered fashion.

A federate that becomes time regulating may associate some of its activities (such as updating instance
attribute values and sending interactions) with points on the federation time axis. It shall do so by
assigning time stamps to activities that reflect the points on the federation time axis with which the
activities are associated. A federate that is time constrained is interested in receiving notifications of these
activities (such as reflecting instance attribute values and receiving interactions) in a federation-wide
time-stamp order. Use of the time management services allows this type of coordination among time-
regulating and time-constrained federates in an execution. The coordination shall be achieved by various
constraints on federate activities described in this chapter.

The activities of federates that are neither time regulating nor time constrained (the default state of all
federates upon joining an execution) shall not be coordinated with other federates by the RTI, and such
federates need not make use of any of the time management services.

8.1.1 Messages

The manner in which HLA services are coordinated with time shall be through the concept of messages.
— Invocation of the Update Attribute Values service, Send Interaction service, Send Interaction with

Region service, or Delete Object Instance service by a federate shall be called sending a message.
— Invocation of the Reflect Attribute Values † service, Receive Interaction † service, or Remove

Object Instance † service at a federate shall be called receiving a message.

Messages sent by one federate typically result in one or more other federates receiving a corresponding
message. The mapping from one sent message to one or more received messages shall follow the rules of
Clauses 5, 6, and 9. For example, a sent message representing an Update Attribute Values service
invocation shall result only in received messages representing Reflect Attribute Values † service
invocations at the appropriate federates depending on the normal publication/subscription rules. Messages
shall also be referred to as events.

Each message, sent or received, shall be either a time-stamped order (TSO) message or a receive order
(RO) message. The order type of a message shall be determined by several factors:
— Preferred order type: The preferred order type of a message shall be the same as the preferred order

type of the data contained in the message (instance attribute values or interactions). Each class
attribute and interaction class shall be provided with a preferred order type in the FED that
indicates the order type (TSO or RO) that should be used when sending messages carrying values
for instances of these classes. In the case of sent messages representing a Delete Object Instance
service invocation, the preferred order type of the message shall be based on the preferred order

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

108

type of the privilegeToDeleteObject attribute of the specified object instance. Federates may use the
Change Attribute Order Type service to change the preferred order type of instance attributes; the
preferred order type of class attributes may not be changed during an execution. Federates may use
the Change Interaction Order Type service to change the preferred order type of interaction classes.

— Presence of a time stamp: Each of the services that corresponds to sending or receiving a message
shall have an optional time-stamp argument. If a message is sent using a service invocation in
which the optional time stamp is supplied, then the federate is attempting to send a TSO message.
If a message is sent and the optional time stamp is not supplied, then the federate is attempting to
send an RO message. All received TSO messages shall have time stamps; all received RO messages
shall not have time stamps.

— Federate’s time status: Whether or not a federate is time regulating shall determine whether or not
a federate can send TSO messages. Similarly, whether or not a federate is time constrained shall
determine whether or not the federate can receive TSO messages.

— Sent message order type: The order type of a received message shall depend on the order type of
the corresponding sent message.

These factors shall be considered together when determining if a given message is sent or received as a
TSO message or as an RO message.

The order type of a sent message shall be determined by the preferred order type of the message at the
sending federate, whether or not that federate is time regulating, and whether or not a time stamp was
used in the service invocation that sends the message. The following table shall illustrate how the order
type of a sent message shall be determined.

Table 1—Order type of a sent message

Preferred order
type?

Sending federate is time
regulating?

Time stamp
was used?

Order type of sent
message

RO No No RO

RO No Yes ROa

RO Yes No RO

RO Yes Yes ROa

TSO No No RO

TSO No Yes ROa

TSO Yes No RO

TSO Yes Yes TSO

a Despite the presence of a time stamp, messages shall be RO if the preferred order type is RO or the sending
federate is not time regulating. If a stime stamp is provided by the sending federate, it will be removed.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

109

The order type of a received message shall be determined by whether or not that federate is time
constrained and by the order type of the corresponding sent message. The following table shall illustrate
how the order type of a received message shall be determined:

Table 2—Order type of a received message

Receiving federate is
time constrained?

Order type of
corresponding sent
message?

Order type of received message?

No RO RO

No TSO RO

Yes RO RO

Yes TSO TSO

Because of the above rule defining the order type of a received message, the RTI will sometimes convert a
sent TSO message to a received RO message at some receiving federates. The need for such conversions
shall be considered on a per-federate basis, and the received messages at different federates that
correspond to the same sent message may be of different order types. Sent RO messages shall never be
converted to received TSO messages.

Messages that are received as TSO messages shall be received only by a given federate in time-stamp
order, regardless of the federates from which the messages originate and regardless of the order in which
the messages were sent. Thus two TSO messages with different time stamps shall always be received by
each federate in the same order. Multiple TSO messages having the same time stamp shall be received in
an indeterminate order.

Messages that are received as RO messages shall be received in an arbitrary order.

8.1.2 Logical time

Each federate, upon joining an execution, shall be assigned a logical time. A federate’s logical time shall
initially be set to the initial time on the federation time axis (time zero). Time within a federation shall
only advance; thus a federate may request to advance only to a time that is greater than or equal to its
current logical time. In order for a federate to advance its logical time, it shall request an advance
explicitly. The advance shall not occur until the RTI issues a grant. In general, at any instant during an
execution, different federates may be at different logical times.

Federates also may become time regulating and/or time constrained. The logical times of federates that are
time regulating shall be used to constrain the advancement of the logical times of federates that are time
constrained.

8.1.3 Time-regulating federates

Only time regulating federates may send TSO messages. A federate shall request to become time
regulating by invoking the Enable Time Regulation service. The RTI shall subsequently make the federate
time regulating by invoking the Time Regulation Enabled † service at that federate. A federate shall cease
to be time regulating whenever it invokes the Disable Time Regulation service.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

110

Each time-regulating federate shall provide a lookahead value when becoming time regulating.
Lookahead shall be a non-negative value that establishes a lower bound on the time stamps that can be
sent in TSO messages by the federate. Specifically, a time-regulating federate shall not send a TSO
message that contains a time stamp less than its current logical time plus its lookahead. Once established,
a federate’s lookahead value may be changed only using the Modify Lookahead service.

A time-regulating federate with a lookahead value of zero shall be subject to an additional restriction. If
such a federate has advanced its logical time by use of Time Advance Request or Next Event Request, then
it shall not send TSO messages that contain time stamps less than or equal to its logical time (rather than
the usual less-than restriction). Subsequent use of a different time advancement service shall lift this
additional restriction.

NOTE—A time-regulating federate need not send TSO messages in time-stamp order, but all TSO messages that it
sends shall be received by other federates in time-stamp order (if they are received as TSO messages).

8.1.4 Time-constrained federates

Only time-constrained federates can receive TSO messages. A federate shall request to become time
constrained by invoking the Enable Time Constrained service. The RTI shall subsequently make the
federate time constrained by invoking the Time Constrained Enabled † service at that federate. A federate
shall cease to be time constrained whenever it invokes the Disable Time Constrained service.

Each federate in an execution, whether time constrained or not, shall have an associated lower bound on
the time stamp (LBTS) value. The LBTS value shall be calculated by the RTI and shall represent the
smallest time stamp that could ever be received by that federate in a TSO message if that federate were
time constrained. In performing this calculation for a given federate, the RTI shall take into account the
logical time and lookahead of all time-regulating federates in the execution (less the given federate if it is
also time regulating) to determine the smallest time stamp that the given federate could receive in a TSO
message. If there are no time-regulating federates in an execution (less the given federate), then that
federate’s LBTS value shall be infinite.

To help ensure that time-constrained federates receive all TSO messages in time-stamp order, a time-
constrained federate shall not be permitted to advance its logical time beyond its LBTS value. This
ensures that a time-constrained federate cannot receive a TSO message with a time stamp that is less than
the federate’s logical time. Should a time-constrained federate request to advance its logical time beyond
its current LBTS value, the time advance shall not be granted until the federate’s LBTS has increased
sufficiently for the constraint to be met.

8.1.5 Advancing time

A federate may advance its logical time only by requesting a time advancement from the RTI. Its logical
time shall not actually be advanced until the RTI responds with a Time Advance Grant † service
invocation at that federate. The interval between these service invocations shall be the Time Advancing
state; this is shown in the statechart in Figure 12.

A federate shall request to advance its logical time by invoking one of the following services:
— Time Advance Request
— Time Advance Request Available
— Next Event Request
— Next Event Request Available
— Flush Queue Request

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

111

Each service shall take a requested logical time as an argument, shall request slightly different
coordination from the RTI, and shall be further elaborated in the service descriptions as described in the
following table.

Table 3—Service descriptions

Constraint on
advance to t1

Messages delivered before grant to t2 Constraint on grant
to t2

TAR Can’t send ts < t1+
lookahead

All queued RO messages

All TSO messages with ts ≤ t2

Can’t send ts < t2+
lookahead

t2 = t1

TAR

(zero lookahead)

Can’t send ts ≤ t1 All queued RO messages

All TSO messages with ts ≤ t2

Can’t send ts ≤ t2 t2 = t1

TARA Can’t send ts < t1+
lookahead

All queued RO messages

All TSO messages with ts < t2

All queued TSO messages with ts = t2

Can’t send ts < t2+
lookahead

t2 = t1

NER Can’t send ts < t1+
lookahead

All queued RO messages

Smallest TSO message that will ever be
received that has a ts ≤ t1 and all other TSO
messages with the same ts

Can’t send ts < t2+
lookahead

t2 ≤ t1

NER

(zero lookahead)

Can’t send ts ≤ t1 All queued RO messages

Smallest TSO message that will ever be
received that has a ts ≤ t1 and all other TSO
messages with the same ts

Can’t send ts ≤ t2 t2 ≤ t1

NERA Can’t send ts < t1+
lookahead

All queued RO messages

Smallest TSO message that will ever be
received that has a ts ≤ t1 and all other
queued TSO messages with the same ts

Can’t send ts < t2+
lookahead

t2 ≤ t1

FQR Can’t send ts < t1+
lookahead

All queued RO messages

All queued TSO messages

Can’t send ts < t2+
lookahead

t2 ≤ t1

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

112

The Time Advance Grant † service shall be used to grant an advance regardless of which form of request
was made to advance time. This service shall takes a logical time as an argument, and this shall be the
federate’s new logical time. The guarantee that the RTI makes about message delivery relative to the
provided logical time shall depend on the type of request to advance time; the specific guarantees shall be
provided in the service descriptions. Note that in some cases, the RTI can advance a federate to a logical
time that is less than the time that the federate requested.

The RTI shall grant an advance to logical time T only when it can guarantee that all TSO messages with
time stamps less than T (or in some cases less than or equal to T) have been delivered to the federate. This
guarantee enables the federate to simulate the behavior of the entities it represents up to logical time T
without concern for receiving new events with time stamps less than T. Note that in some cases, providing
this guarantee will require the RTI to wait for a significant period of wall-clock time to elapse before it
can grant a time advancement to a time-constrained federate. However, in the case of federates that are
not time constrained (and thus cannot receive TSO messages), the guarantee is trivially true and the
advance can be granted almost immediately.

The advancing of logical time by time-regulating federates is important because it acts as their promise
not to send any TSO messages with time stamps less than some specified time. In general, when time-
regulating federates move their logical times forward, time-constrained federates can move forward as
well.

Federates that are not time regulating need not advance their logical time, but may do so. Such
advancements shall have no effect on other federates’ time advancement unless the advancing federate
later becomes time regulating (at which point the advancing federate will begin to have an effect on the
advancement of time-constrained federates).

8.1.6 Putting it all together

The statechart shown in Figure 12 shall illustrate when a federate may become time regulating and time
constrained, when time advances may be requested, how a federate enables or disables asynchronous
message delivery, and the effect these activities have on determining sent and received message order
types and when messages may be sent and received.

The transition labeled “Send Message” shall represent any service invocation that is called sending a
message. As represented in the statechart, such a transition can occur at any time and shall result in the
federate returning to whatever state it was in before the transition. The column to the right of the
statechart elaborates on how the order type of the sent message is determined. Each part of the definition
of “Send Message” shall be composed of a conversion rule (denoted as two terms separated by an arrow)
and an optional Boolean guard (denoted in square braces, just as in statecharts). The term to the left of the
arrow in each conversion rule shall represent the preferred order type of the message and whether or not a
time stamp was provided by the invoking federate. The term to the right of the arrow shall represent the
order type of the sent message. The guard shall represent under what circumstances the conversion rule
applies. So each part of the definition shall be read as: if the preferred order type of the message is as
indicated to the left of the arrow, the usage of a time stamp is as described to the left of the arrow, and the
Boolean guard (if present) is true, then the order type of the sent message is as indicated to the right of the
arrow. The conversion rules provided in the statechart are the same as the results contained in the tables
in 8.1.1.

The transitions labeled “Receive Message #1” and “Receive Message #2” shall be read similarly with one
exception: The conversion rules shall be slightly different. The term to the left of the arrow shall represent

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

113

the order type of the received message. The term to the right of the arrow shall represent the order type of
the corresponding sent message.

Federates may send messages at any time in this diagram. If the federate is time regulating and sending a
TSO message, the time stamp of that message shall be constrained as described in 8.1.3 with one
exception: When a federate is in the Time Advancing state, the stated constraint is not strong enough.
Rather than comparing the time stamp of the TSO message to the federate’s logical time (plus lookahead),
the time stamp shall be compared to the federate’s requested logical time (plus its lookahead).1

When federates are eligible to receive messages shall be dependent on several factors. If the federate is not
time constrained, it may receive messages at any time (although only RO messages may be received). If
the federate is time constrained, it shall normally receives messages only when in the Time Advancing
state. However, federates may enable asynchronous message delivery (via the Enable Asynchronous
Delivery service), which permits them to receive RO messages (but not TSO messages) when not in the
Time Advancing state.

Which RO messages will be received when a federate is eligible to receive RO messages shall depend only
on which messages have been sent that will be received as RO messages by that federate. In general, if a
federate is eligible to receive RO messages, it may receive all RO messages that it has not yet received.

Which TSO messages will be received when a federate is eligible to receive TSO messages shall depend
on which TSO messages have been sent that will be received as TSO messages, what time stamps the
messages have, and what form of time advancement was requested. Precisely which TSO messages will be
received shall be defined in each of the different time advancement services.

Because messages are not always eligible for delivery, the RTI shall internally queue pending messages
for each federate. The RTI shall queue all messages that the federate will receive as TSO or RO messages.
When messages are finally delivered to the federate, they shall be removed from the queue.

1 Note that if the federate is granted to a time that is less than its requested logical time (e.g., the request
used the Next Event Request, Next Event Request Available, or Flush Queue Request service), the
constraints shalll ease upon leaving the Time Advancing state.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

114

Temporal State

Where the following transitions are
expanded:

 Send Message ==
RO ∧ no_ts → RO

or
TSO ∧ ts → TSO
[in “Regulating”]

or
TSO ∧ no_ts → RO

 Receive Message #1 ==
RO ← RO

or
RO ← TSO
[in “Not Constrained”]

or
TSO ← TSO
[in “Constrained”]

 Receive Message #2 ==
RO ← RO
[in “Asynch Enabled” ∨
 in “Not Constrained”]

or
RO ← TSO
[in “Not Constrained]

Time Regulating Status

Time Constrained Status

Asynchronous Delivery Switch

Regulating Not
Regulating

Disable Time
Regulation

Time Regulation
Enabled†

Constrained Not
Constrained

Disable Time
Constrained

Time Constrained
Enabled†

Asynchronous
Delivery
Enabled

Disable Asynchronous Delivery

Enable Asynchronous Delivery

H*
Send Message

Receive Message #1

Receive
Message #2

Time
Advancing

Time Advance
Grant†

Time Advance Request
or

Time Advance Request Available
or

Next Event Request
or

Next Event Request Available
or

Flush Queue Request

Idle

Time Constrained

Enabled†Tim
e R

eg
ula

tio
n

Ena
ble

d†

Becoming
Regulating and

Constrained

Tim
e R

eg
ula

tio
n E

na
ble

d†

Tim
e Constrained Enabled†

Enable Tim
e Constrained

[in “Not Constrained”]

Becoming
Constrained

Becoming
Regulating

Ena
ble

 T
im

e R
eg

ula
tio

n

[i
n “

Not
Reg

ula
tin

g”
]

Enable Time Constrained

[in “Not Constrained”]

Enable T
im

e R
egulati

on

[in
 “N

ot R
egulati

ng”]

H

Asynchronous
Delivery
Disabled

Time Granted

Figure 12—Temporal state

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

115

NOTE—failure to make full use of the time management services (and hence causal ordering) can lead to unusual
results. For example, if a federate receiving messages concerning a particular object instance is not time constrained,
it could receive a message concerning the deletion of that object instance and subsequently receive a message
concerning the updating of the value of one of that object instance’s attributes. This is because a federate that is not
time constrained can receive only RO messages, and RO messages originating from different federates (e.g., one that
updates an attribute instance and one that deletes the object instance) are not causally ordered.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

116

8.2 Enable Time Regulation

The Enable Time Regulation service shall enable time regulation for the federate invoking the service,
thereby enabling the federate to send TSO messages. The federate shall request that its logical time and
lookahead value be set to the values specified as arguments. The RTI may not be able to set the federate’s
logical time to the value that was requested because doing so might enable the federate to, for example,
send a message with a time stamp smaller than the current logical time of another federate. The RTI shall
indicate the logical time assigned to the federate through the Time Regulation Enabled † service. The
logical time that is assigned shall be greater than or equal to that requested by the federate.

Because the invocation of this service may require the RTI to advance the invoking federate’s logical time,
this service has an additional meaning for time-constrained federates. Since the advancing logical time for
a time-constrained federate is synonymous with a guarantee that all TSO messages with time stamps less
than the new logical time have been delivered, the invocation of this service shall be considered an
implicit Time Advance Request service invocation. The subsequent invocation of Time Regulation
Enabled † shall be considered an implicit Time Advance Grant † service invocation. Thus if a time-
constrained federate attempts to become time regulating, it may receive RO and TSO messages between
its invocation of Enable Time Regulation and the RTI’s invocation of Time Regulation Enabled † at the
federate. This special case is not illustrated in the statechart in Figure 12.

Supplied Arguments
— Value of federation time
— Lookahead value

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— None of the Time Advance Request, Time Advance Request Available, Next Event Request, Next

Event Request Available, Flush Queue Request, or Enable Time Regulation services is pending.
— Time regulation is not enabled in the federate.
— The specified federation time is greater than or equal to the federate’s current logical time.
— If the federate is time constrained, the argument is equal to the federate's current logical time.

Post-conditions
— The RTI is informed of the federate’s request to enable time regulation.

Exceptions
— The federate is not a federation execution member.
— Time regulation is already enabled.
— Invalid federation time
— Invalid lookahead time
— The Time Advance Request, Time Advance Request Available, Next Event Request, Next Event

Request Available, or Flush Queue Request service is already pending.
— An Enable Time Regulation request is already pending.
— Save in progress
— Restore in progress

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

117

— RTI internal error

Related Services
— Time Regulation Enabled †
— Disable Time Regulation
— Enable Time Constrained
— Time Constrained Enabled †
— Disable Time Constrained

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

118

8.3 Time Regulation Enabled †

Invocation of the Time Regulation Enabled † service shall indicate that a prior request to enable time
regulation has been honored. The value of this service’s argument shall indicate that the logical time of
the federate has been set to the specified value.

Supplied Arguments
— Current logical time of the federate

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The Enable Time Regulation service is pending.

Post-conditions
— Time regulation is enabled and the federate may now send TSO messages. The federate’s logical

time shall be set to the value specified as the argument to this service. The federate’s lookahead
shall be set to that specified in the corresponding Enable Time Regulation request.

— If the federate is time constrained, no additional TSO messages shall be delivered with time stamps
less than or equal to the provided time.

Exceptions
— Invalid federation time
— Enable Time Regulation was not pending.
— Federate internal error

Related Services
— Enable Time Regulation
— Disable Time Regulation
— Enable Time Constrained
— Time Constrained Enabled †
— Disable Time Constrained

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

119

8.4 Disable Time Regulation

Invocation of the Disable Time Regulation service shall indicate that the federate is disabling time
regulation. Subsequent messages sent by the federate shall be sent automatically as RO messages.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— Time regulation is enabled in the federate.

Post-conditions
— The federate may no longer send TSO messages.

Exceptions
— The federate is not a federation execution member.
— Time Regulation was not enabled.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Enable Time Regulation
— Time Regulation Enabled †
— Enable Time Constrained
— Time Constrained Enabled †
— Disable Time Constrained

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

120

8.5 Enable Time Constrained

The Enable Time Constrained service shall request that the federate invoking the service become time
constrained. The RTI shall indicate that the federate is time constrained by invoking the Time
Constrained Enabled † service.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— None of the Time Advance Request, Time Advance Request Available, Next Event Request, Next

Event Request Available, Flush Queue Request, or Enable Time Constrained services is pending.
— The federate is not already time constrained.

Post-conditions
— The RTI is informed of the federate’s request to become time constrained

Exceptions
— The federate is not a federation execution member.
— Time constrained is already enabled.
— The Time Advance Request, Time Advance Request Available, Next Event Request, Next Event

Request Available, or Flush Queue Request service is already pending.
— An Enable Time Constrained request is already pending.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Enable Time Regulation
— Time Regulation Enabled †
— Disable Time Regulation
— Time Constrained Enabled †
— Disable Time Constrained
— Enable Asynchronous Delivery
— Disable Asynchronous Delivery

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

121

8.6 Time Constrained Enabled †

Invocation of the Time Constrained Enabled † service shall indicate that a prior request to become time
constrained has been honored. The value of this service’s argument shall indicate the current logical time
of the federate.

When a federate changes to be time constrained, TSO messages stored in the RTI’s internal queues that
have time stamps greater than or equal to the federate’s logical time shall be delivered in time-stamp
order. TSO messages delivered to the federate before it becomes time constrained, possibly including
messages with time stamps greater than or equal to the federate’s current logical time, shall be delivered
as RO messages.

Federates that are time constrained may receive messages only when in the Time Advancing state unless
asynchronous message delivery is enabled (by use of the Enable Asynchronous Delivery † service). If
asynchronous message delivery is enabled, the time-constrained federate may receive RO messages when
not in the Time Advancing state, but TSO messages may still be received only when in the Time
Advancing state.

If the federate is time regulating, the argument shall equal the federate's current logical time. If the
federate is not time regulating, the argument shall be greater than or equal to the federate’s current logical
time.

Supplied Arguments
— Value of federation time

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The Enable Time Constrained service is pending.

Post-conditions
— The federate may now receive TSO messages, and its logical time advances are constrained so that

the federate’s logical time shall never exceed the LBTS value computed by the RTI for the federate.
The federate’s logical time shall be set to the value specified as the argument to this service.

Exceptions
— The federation time is invalid.
— Enable Time Constrained was not pending.
— Federate internal error

Related Services
— Enable Time Regulation
— Time Regulation Enabled †
— Disable Time Regulation
— Enable Time Constrained
— Disable Time Constrained
— Enable Asynchronous Delivery
— Disable Asynchronous Delivery

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

122

8.7 Disable Time Constrained

Invocation of the Disable Time Constrained service shall indicate that the federate is no longer time
constrained. All enqued and subsequent TSO messages shall be delivered to the federate as RO messages.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate is time constrained.

Post-conditions
— The federate is no longer time constrained and can no longer receive TSO messages.

Exceptions
— The federate is not a federation execution member.
— Time Constrained was not enabled.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Enable Time Regulation
— Time Regulation Enabled †
— Disable Time Regulation
— Enable Time Constrained
— Time Constrained Enabled †
— Enable Asynchronous Delivery
— Disable Asynchronous Delivery

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

123

8.8 Time Advance Request

The Time Advance Request service shall request an advance of the federate's logical time and release zero
or more messages for delivery to the federate.

Invocation of this service shall cause the following set of messages to be delivered to the federate:
— All messages queued in the RTI that the federate will receive as RO messages.
— All messages that the federate will receive as TSO messages that have time stamps less than or

equal to the specified time.

After invoking Time Advance Request, the messages shall be passed to the federate by the RTI invoking
the Receive Interaction †, Reflect Attribute Values †, and Remove Object Instance † services.

By invoking Time Advance Request with the specified time, the federate is guaranteeing that it will not
generate a TSO message at any time in the future with a time stamp less than or equal to the specified
time, even if the federate’s lookahead is zero. Further, the federate may not generate any TSO messages in
the future with time stamps less than the specified time plus that federate’s current lookahead.

A Time Advance Grant † shall complete this request and indicate to the federate that it has advanced its
logical time to the specified time, and that no additional TSO messages will be delivered to the federate in
the future with time stamps less than or equal to the time of the grant.

Supplied Arguments
— Value of federation time

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The specified time is greater than or equal to the federate’s logical time.
— None of the Time Advance Request, Time Advance Request Available, Next Event Request, Next

Event Request Available, Flush Queue Request, Enable Time Regulation, or Enable Time
Constrained services is pending.

Post-conditions
— The federate may not send any TSO messages with time stamps less than the specified time plus the

federate’s actual lookahead.
— If the federate’s lookahead is zero, it may not send any TSO messages with time stamps less than or

equal to the specified time.
— The RTI is informed of the federate’s request to advance time.

Exceptions
— The federation time is invalid.
— The Time Advance Request, Time Advance Request Available, Next Event Request, Next Event

Request Available, or Flush Queue Request service is already pending.
— Enable Time Regulation request is already pending.
— Enable Time Constrained request is already pending.
— The federate is not a federation execution member.
— Save in progress

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

124

— Restore in progress
— RTI internal error

Related Services
— Time Advance Request Available
— Next Event Request
— Next Event Request Available
— Flush Queue Request
— Time Advance Grant †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

125

8.9 Time Advance Request Available

The Time Advance Request Available service shall request an advance of the federate's logical time. It is
similar to Time Advance Request to time T except
— The RTI shall not guarantee delivery of all messages with time stamps equal to T when a Time

Advance Grant † to time T is issued, and
— After the federate receives a Time Advance Grant † to time T, it can send additional messages with

time stamps equal to T if the federate’s lookahead value is zero.

Invocation of this service shall cause the following set of messages to be delivered to the federate:
— All messages queued in the RTI that the federate will receive as RO messages.
— All messages that the federate will receive as TSO messages that have time stamps less than the

specified time.
— Any messages queued in the RTI that the federate will receive as TSO messages that have time

stamps equal to the specified time.

After invoking Time Advance Request Available, the messages shall be passed to the federate by the RTI
invoking the Receive Interaction †, Reflect Attribute Values †, and Remove Object Instance † services.

By invoking Time Advance Request Available with the specified time, the federate is guaranteeing that it
will not generate a TSO message at any time in the future with a time stamp less than the specified time,
plus that federate’s current lookahead.

A Time Advance Grant † shall complete this request and indicate to the federate that it has advanced its
logical time to the specified time, and no additional TSO messages shall be delivered to the federate in the
future with time stamps less than the time of the grant. Additional messages with time stamps equal to the
time of the grant can arrive in the future.

Supplied Arguments
— Value of federation time

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The specified time is greater than or equal to the federate’s logical time.
— None of the Time Advance Request, Time Advance Request Available, Next Event Request, Next

Event Request Available, Flush Queue Request, Enable Time Regulation, or Enable Time
Constrained services is pending.

Post-conditions
— The federate may not send any TSO messages with time stamps less than the specified time plus the

federate’s actual lookahead.
— The RTI is informed of the federate’s request to advance time.

Exceptions
— The federation time is invalid.
— The Time Advance Request, Time Advance Request Available, Next Event Request, Next Event

Request Available, or Flush Queue Request service is already pending.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

126

— Enable Time Regulation request is already pending.
— Enable Time Constrained request is already pending.
— Federation time has already passed.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Time Advance Request
— Next Event Request
— Next Event Request Available
— Flush Queue Request
— Time Advance Grant †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

127

8.10 Next Event Request

The Next Event Request service shall request the logical time of the federate to be advanced to the time
stamp of the next TSO message that will be delivered to the federate, provided that message has a time
stamp no greater than the logical time specified in the request.

Invocation of this service shall cause the following set of messages to be delivered to the federate:
— All messages queued in the RTI that the federate will receive as RO messages
— The smallest time-stamped message that will ever be received by the federate as a TSO message

with a time stamp less than or equal to the specified time, and all other messages containing the
same time stamp that the federate will receive as TSO messages

After invocation of Next Event Request, the messages shall be passed to the federate by the RTI invoking
the Receive Interaction †, Reflect Attribute Values †, and Remove Object Instance † services.

By invoking Next Event Request with the specified time, the federate is guaranteeing that it will not
generate a TSO message before the pending Time Advance Grant † invocation with a time stamp less than
or equal to the specified time (or less than the specified time plus the federate’s lookahead if its lookahead
is not zero).

If it does not receive any TSO messages before the Time Advance Grant † invocation, the federate shall
guarantee that it will not generate a TSO message at any time in the future with a time stamp less than or
equal to the specified time (or less than the specified time plus the federate’s lookahead if its lookahead is
not zero).

If it does receive any TSO messages before the Time Advance Grant † invocation, the federate shall
guarantee that it will not generate a TSO message at any time in the future with a time stamp less than or
equal to the time of the grant (or less than the time of the grant plus the federate’s lookahead if its
lookahead is not zero).

A Time Advance Grant † shall complete this request and indicate to the federate that it has advanced its
logical time to the time stamp of the TSO messages that are delivered, if any, or to the specified time if no
TSO messages were delivered. It shall also indicate that no TSO messages will be delivered to the federate
in the future with time stamps less than or equal to the time of the grant.

Supplied Arguments
— Value of federation time

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The specified time is greater than or equal to the federate’s logical time.
— None of the Time Advance Request, Time Advance Request Available, Next Event Request, Next

Event Request Available, Flush Queue Request, Enable Time Regulation, or Enable Time
Constrained services is pending.

Post-conditions
— The federate may not send any TSO messages with time stamps less than the specified time plus the

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

128

federate’s actual lookahead.
— If the federate’s lookahead is zero, it may not send any TSO messages with time stamps less than or

equal to the specified time.
— The RTI is informed of the federate’s request to advance time.

Exceptions
— The federation time is invalid.
— The Time Advance Request, Time Advance Request Available, Next Event Request, Next Event

Request Available, or Flush Queue Request service is already pending.
— Enable Time Regulation request is already pending.
— Enable Time Constrained request is already pending.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Time Advance Request
— Time Advance Request Available
— Next Event Request Available
— Flush Queue Request
— Time Advance Grant †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

129

8.11 Next Event Request Available

The Next Event Request Available service shall request the logical time of the federate to be advanced to
the time stamp of the next TSO message that will be delivered to the federate, provided that message has a
time stamp no greater than the logical time specified in the request. It is similar to Next Event Request
except
— The RTI shall not guarantee delivery of all messages with time stamps equal to T when a Time

Advance Grant † to time T is issued, and
— After the federate receives a Time Advance Grant † to time T, it can send additional messages with

time stamps equal to T if the federate’s lookahead value is zero.

Invocation of this service shall cause the following set of messages to be delivered to the federate:
— All messages queued in the RTI that the federate will receive as RO messages
— The smallest time-stamped message that will ever be received by the federate as a TSO message

with a time stamp less than or equal to the specified time, and any other messages queued in the
RTI that the federate will receive as TSO messages and that have the same time stamp.

 After invoking Next Event Request Available, the messages shall be passed to the federate by the RTI
invoking the Receive Interaction †, Reflect Attribute Values †, and Remove Object Instance † services.

 By invoking Next Event Request Available with the specified time, the federate is guaranteeing that it will
not generate a TSO message before the pending Time Advance Grant † invocation with a time stamp less
than the specified time plus the federate’s lookahead.

 If it does not receive any TSO messages before the Time Advance Grant † invocation, the federate shall
guarantee that it will not generate a TSO message at any time in the future with a time stamp less than the
specified time plus the federate’s lookahead.

 If it does receive any TSO messages before the Time Advance Grant † invocation, the federate shall
guarantee that it will not generate a TSO message at any time in the future with a time stamp less than the
time of the grant plus the federate’s lookahead.

 A Time Advance Grant † shall complete this request and indicate to the federate that it has advanced its
logical time to the time stamp of the TSO messages that are delivered, if any, or to the specified time if no
TSO messages were delivered. A Time Advance Grant † shall also indicate that no TSO messages will be
delivered to the federate in the future with time stamps less than the time of the grant.

Supplied Arguments
— Value of federation time

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The specified time is greater than or equal to the federate’s logical time.
— None of the Time Advance Request, Time Advance Request Available, Next Event Request, Next

Event Request Available, Flush Queue Request, Enable Time Regulation, or Enable Time
Constrained services is pending.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

130

Post-conditions
— The federate may not send TSO messages with time stamps less than the specified time plus the

federate’s actual lookahead.
— The RTI is informed of the federate’s request to advance time.

Exceptions
— The federation time is invalid.
— The Time Advance Request, Time Advance Request Available, Next Event Request, Next Event

Request Available, or Flush Queue Request service is already pending
— Enable Time Regulation request is already pending.
— Enable Time Constrained request is already pending.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Time Advance Request
— Time Advance Request Available
— Next Event Request
— Flush Queue Request
— Time Advance Grant †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

131

8.12 Flush Queue Request

 The Flush Queue Request service shall request that all messages queued in the RTI that the federate will
receive as TSO messages be delivered now. The RTI shall deliver all such messages as soon as possible,
despite the fact that it may not be able to guarantee that no future messages containing smaller time
stamps could arrive. If the federate will not receive any additional TSO messages with time stamps less
than the specified time, the federate’s logical time shall be advanced to the specified time. Otherwise, the
RTI shall advance the federate’s logical time as far as possible, but potentially not at all.

 Invocation of this service shall cause the following set of messages to be delivered to the federate:
— All messages queued in the RTI that the federate will receive as RO messages.
— All messages queued in the RTI that the federate will receive as TSO messages.

After invoking Flush Queue Request, the messages shall be passed to the federate by the RTI invoking the
Receive Interaction †, Reflect Attribute Values †, and Remove Object Instance † services.

By invoking Flush Queue Request with the specified time, the federate is guaranteeing that it will not
generate a TSO message before the pending Time Advance Grant † invocation with a time stamp less than
the specified time plus the federate’s lookahead.

After the Time Advance Grant † invocation, the federate shall guarantee that it shall not generate a TSO
message at any time in the future with a time stamp less than the time of the grant plus the federate’s
lookahead.

A Time Advance Grant † shall complete this request and indicate to the federate that it has advanced its
logical time to the time of the grant, and no additional TSO messages shall be delivered to the federate in
the future with time stamps less than the time of the grant.

Supplied Arguments
— Value of federation time

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The specified time is greater than or equal to the federate’s logical time.
— None of the Time Advance Request, Time Advance Request Available, Next Event Request, Next

Event Request Available, Flush Queue Request, Enable Time Regulation, or Enable Time
Constrained services is pending.

Post-conditions
— The federate may not send any TSO messages with time stamps less than the specified time plus the

federate’s actual lookahead.
— The RTI is informed of the federate’s request to advance time.

Exceptions
— The federation time is invalid.
— The Time Advance Request, Time Advance Request Available, Next Event Request, Next Event

Request Available, or Flush Queue Request service is already pending.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

132

— Enable Time Regulation request is already pending.
— Enable Time Constrained request is already pending.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Time Advance Request
— Time Advance Request Available
— Next Event Request
— Next Event Request Available
— Time Advance Grant †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

133

8.13 Time Advance Grant †

Invocation of the Time Advance Grant † service shall indicate that a prior request to advance the
federate’s logical time has been honored. The argument of this service shall indicate that the logical time
for the federate has been advanced to this value.

If the grant is issued in response to invocation of Next Event Request or Time Advance Request, the RTI
shall guarantee that no additional TSO messages shall be delivered in the future with time stamps less
than or equal to this value.

If the grant is in response to an invocation of Time Advance Request Available, Next Event Request
Available, or Flush Queue Request, the RTI shall guarantee that no additional TSO messages shall be
delivered in the future with time stamps less than the value of the grant.

Supplied Arguments
— Value of federation time

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— One of the Time Advance Request, Time Advance Request Available, Next Event Request, Next

Event Request Available, or Flush Queue Request services is pending.

Post-conditions
— If the federate has a change to its lookahead value pending, its new actual lookahead value shall be

equal to the maximum of the federate’s requested lookahead and the federate’s actual lookahead
less the amount of time advanced (the federate’s old logical time less the provided logical time).

— If Next Event Request, Next Event Request Available, or Flush Queue Request has been invoked,
the federate may not send TSO messages with time stamps less than the provided time plus the
federate’s actual lookahead.

— If Next Event Request has been invoked and the federate’s actual lookahead is zero, the federate
may not send TSO messages with time stamps less than or equal to the provided time.

— No additional TSO messages shall be delivered with time stamps less than or equal to the provided
time if Time Advance Request or Next Event Request has been invoked, or with time stamps less
than the provided time if Time Advance Request Available, Next Event Request Available, or Flush
Queue Request has been invoked.

Exceptions
— The federation time is invalid.
— The Time Advance Request, Time Advance Request Available, Next Event Request, Next Event

Request Available, or Flush Queue Request service was not pending.
— Federate internal error

Related Services
— Time Advance Request
— Time Advance Request Available
— Next Event Request

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

134

— Next Event Request Available
— Flush Queue Request

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

135

8.14 Enable Asynchronous Delivery

Invocations of the Enable Asynchronous Delivery service shall instruct the RTI to deliver received RO
messages to the invoking federate when it is in either the Time Advancing or Time Granted state.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— Asynchronous delivery is disabled at the federate.

Post-conditions
— Asynchronous delivery is enabled at the federate.

Exceptions
— The federate is not a federation execution member.
— Asynchronous delivery is already enabled.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Enable Time Constrained
— Time Constrained Enabled †
— Disable Time Constrained
— Disable Asynchronous Delivery

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

136

8.15 Disable Asynchronous Delivery

Invocations of the Disable Asynchronous Delivery service shall instruct the RTI to deliver received RO
messages to the invoking federate only when it is in the Time Advancing state and the federate is time
constrained.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— Asynchronous delivery is enabled at the federate.

Post-conditions
— Asynchronous delivery is disabled at the federate.

Exceptions
— The federate is not a federation execution member.
— Asynchronous delivery is already disabled.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Enable Time Constrained
— Time Constrained Enabled †
— Disable Time Constrained
— Enable Asynchronous Delivery

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

137

8.16 Query LBTS

The Query LBTS service shall request the invoking federate’s current value of LBTS.

Supplied Arguments
— None

Returned Arguments
— Current value of invoking federate’s LBTS

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate receives the current value of its LBTS.

Exceptions
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Query Federate Time
— Query Minimum Next Event Time

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

138

8.17 Query Federate Time

The Query Federate Time service shall request the current value of the invoking federate’s logical time.

Supplied Arguments
— None

Returned Arguments
— Current value of invoking federate’s logical time

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate receives the current value of its logical time.

Exceptions
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Query LBTS
— Query Minimum Next Event Time

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

139

8.18 Query Minimum Next Event Time

The Query Minimum Next Event Time service shall request the minimum of LBTS and the time stamp of
the next sent TSO message that is held by the RTI for delivery to the requesting federate, if there are any.
There may not be any messages/events with the returned time available for the invoking federate.

Supplied Arguments
— None

Returned Arguments
— Minimum of

 the invoking federate’s LBTS and
 the minimum time stamp of all sent TSO messages queued for the invoking federate (if any).

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate receives its minimum next event time.

Exceptions
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Query LBTS
— Query Federate Time

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

140

8.19 Modify Lookahead

The Modify Lookahead service shall request a change to the actual value of the federate’s lookahead. The
specified lookahead value shall be greater than or equal to zero. If the requested value is greater than or
equal to the federate’s actual lookahead, the change shall take effect immediately and the requested
lookahead shall become the actual lookahead. If the requested value is less than the federate’s actual
lookahead, the change shall take effect gradually as the federate advances its logical time and the actual
lookahead is initially unchanged. Specifically, the federate’s actual lookahead shall decrease by T units
each time logical time advances T units until the requested lookahead value is reached.

Supplied Arguments
— Requested value of lookahead

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— If the requested lookahead is greater than or equal to the federate’s actual lookahead, the federate’s

actual lookahead shall be set to the requested value.
— If the requested lookahead is less than the federate’s actual lookahead, the RTI shall be informed of

the federate’s requested lookahead value.

Exceptions
— The lookahead time is invalid.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Query Lookahead

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

141

8.20 Query Lookahead

The Query Lookahead service shall query the RTI for the current value of the federate’s actual lookahead.
The current value of actual lookahead may differ temporarily from the requested lookahead given in the
Modify Lookahead service if the federate is attempting to reduce its actual lookahead value.

Supplied Arguments
— None

Returned Arguments
— Federate's current value of actual lookahead

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate receives the current value of its actual lookahead.

Exceptions
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Modify Lookahead

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

142

8.21 Retract

The Retract service shall be used by a federate to notify the federation execution that a message/event
previously sent by the federate is to be retracted. The Update Attribute Values, Send Interaction, and
Delete Object Instance services shall return an event retraction designator that is used to specify the event
that is to be retracted. Retracting an event shall cause the invocation of the Request Retraction † service in
all the federates that received the original event.

Retracting a Delete Object Instance message shall result in the reconstitution of the corresponding object
instance. This shall cause the ownership reassumption of the attributes of the affected object instance by
the federates that owned them at the time of the Delete Object Instance service invocation.

Only messages sent in TSO may be retracted. A federate may not retract messages in its past. A message
shall be in a federate’s past if its time is earlier than the federate’s current logical time.

Supplied Arguments
— Event retraction designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The federate has issued Update Attribute Values, Send Interaction, or Delete Object Instance

service invocations previously and obtained the event retraction designators.
— The message associated with the specified retraction designator is not in the federate’s past.

Post-conditions
— The RTI is informed that the federate requests to retract the specified event.

Exceptions
— The event retraction designator is invalid.
— The retraction designator is associated with a message in the federate’s past.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Request Retraction †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

143

8.22 Request Retraction †

If the RTI receives a legal Retract service invocation for an event that has already been delivered to a
federate, the Request Retraction † service shall be invoked on that federate. If the event in question has
not been delivered to a federate, this service shall not be invoked on that federate; the event shall be
removed from the RTI’s event queue and never delivered to the federate.

Supplied Arguments
— Event retraction designator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The retracted event has been delivered to the federate.

Post-conditions
— The federate has been directed to retract the specified event.

Exceptions
— The event is not known.
— Federate internal error

Related Services
— Retract

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

144

8.23 Change Attribute Order Type

The preferred order type for each attribute of an object instance shall be initialized from the object class
description in the FED. A federate may choose to change the preferred order type during execution.
Invoking the Change Attribute Order Type service shall change the order type for all future Update
Attribute Values service invocations for the specified instance attributes. When the ownership of an
instance attribute is changed, the preferred order type shall revert to that defined in the FED.

Supplied Arguments
— Object instance designator
— Set of attribute designators
— Order type

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— An object instance with the specified designator exists.
— The specified class attributes are available attributes of the object instance’s known class.
— The attributes are defined in the FED.
— The federate owns the instance attributes.

Post-conditions
— The order type is changed for the specified instance attributes.

Exceptions
— The object instance is not known.
— The specified class attributes are not available attributes of the known object class.
— The federate does not own the specified instance attributes.
— The order type is invalid.
— The federate is not a federate execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Update Attribute Values
— Change Attribute Transportation Type

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

145

8.24 Change Interaction Order Type

The preferred order type of each interaction shall be initialized from the interaction class description in
the FED. A federate may choose to change the preferred order type during execution. Invoking the
Change Interaction Order Type service shall change the order type for all future Send Interaction and
Send Interaction with Region service invocations for the specified interaction class for the invoking
federate only.

Supplied Arguments
— Interaction class designator
— Order type

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The interaction class is defined in the FED.
— The federate is publishing the interaction class.

Post-conditions
— The preferred order type is changed for the specified interaction class.

Exceptions
— The interaction class is not defined in FED.
— The federate is not publishing the interaction class.
— The order type is invalid.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Send Interaction
— Send Interaction with Region
— Change Interaction Transportation Type

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

147

9. Data distribution management

9.1 Overview

Data distribution management (DDM) services shall be used by federates to reduce both the transmission
and the reception of irrelevant data. Whereas declaration management services provide information on
data relevance at the class attribute level, data distribution management services add the capability to
further refine the data requirements at the instance attribute level. Producers of data shall employ DDM
services to assert properties of their data in terms of user-defined spaces. Consumers of data shall employ
DDM services to specify their data requirements in terms of the same spaces. The RTI distributes data
from producers to consumers based on matches between these properties and requirements.

The DDM services shall be based on the following concepts and terms:
— A dimension shall be a named coordinate axis segment defined in the FED. The RTI shall provide a

single coordinate axis segment defined by a pair of values. This provides a single basis for all
dimensions defined in the FED. The first component of the pair shall be called axis lower bound,
and the second component shall be called axis upper bound. All dimensions shall be based on the
same coordinate-axis segment and thus shall have the same lower and upper bounds.

— A routing space shall be a named sequence of dimensions, which shall form a multi-dimensional
coordinate system. Routing spaces shall be defined in the FED by indicating the dimensions that
form the routing space. Routing spaces defined in the FED shall be said to be available.
Additionally, the RTI shall provide an implicitly defined default routing space.

— A range shall be a continuous interval on a dimension defined by a pair of values. The first
component of the pair shall be called range lower bound, and the second component shall be called
range upper bound.

— An extent shall be a sequence of ranges, one for each dimension in the routing space.
— A region shall be a set of extents bound to a routing space. A region shall defines a sub-space

within the routing space. The RTI shall provide a default region for every routing space. The
default region shall cover the entire routing space.

 The following relationships, established in the FED, shall pertain to routing spaces:
— A class attribute shall be either explicitly bound to an available routing space or implicitly bound to

the default routing space.
— An interaction class shall be either explicitly bound to an available routing space or implicitly

bound to the default routing space.

 The following relationship, established through DDM services, shall pertain to regions:

A region shall be bound to an available routing space by the Create Region service. This binding
shall be revoked by the Delete Region service. Invoking the Modify Region service for a region
shall notify the RTI about modifications to the extents of that region.

 The following relationships, established through DDM services, shall pertain to object classes, class
attributes, object instances, and instance attributes:
— A region shall be used for update of an instance attribute if the federate has used the instance

attribute and region as arguments either
 in the Register Object Instance With Region service or

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

148

 in the Associate Region For Updates service.

Subsequently invoking the Unassociate Region For Update service for the same (object instance,
region) pair or the Associate Region For Updates service for the same (object instance, region) pair
without providing the instance attribute shall cause the region not to be used for update of that
instance attribute.

A region that is used for update of an instance attribute shall be a sub-space of the routing space to
which the instance attribute corresponding class attribute is explicitly bound in the FED.

The default region shall be used for update of an instance attribute if no other region is used for
update of that instance attribute.

A federate shall use a region for update to assert properties for the associated instance attribute
when invoking Update Attribute Values service. If a federate loses ownership of an instance
attribute that is associated with a region, that instance attribute shall no longer be associated with
the corresponding region.

— A region shall be used for subscription of a class attribute if the federate has used the class attribute
and region as arguments in the Subscribe Object Class Attributes With Region service for the
(object class, region) pair. Subsequently invoking the Unsubscribe Object Class With Region
service for the same (object class, region) pair or invoking the Subscribe Object Class Attributes
With Region service for the same (object class, region) pair without providing the class attribute
shall cause the region not to be used for subscription of that class attribute.

A region that is used for subscription of a class attribute shall be a sub-space of the routing space to
which the class attribute is explicitly bound in the FED.

The default region shall be used for subscription of a class attribute if the federate has used the class
attribute as an argument in the Subscribe Object Class Attributes service. Subsequently invoking
the Unsubscribe Object Class service for the same object class or invoking Subscribe Object Class
Attributes service for the same object class without providing the class attribute shall cause the
default region not to be used for subscription of that class attribute.

A federate shall use a region for subscription to specify requirements for reflecting attribute values.

 The following relationships, established through DDM services, shall pertain to interaction classes,
parameters, and interactions:
— A region shall be used for sending an interaction during the invocation of the Send Interaction

With Region service.

A region that is used for sending an interaction shall be a sub-space of the routing space to which
the corresponding interaction class is explicitly bound in the FED.

The default region shall be used for sending an interaction during the invocation of the Send
Interaction service.

A federate shall use a region for sending to assert properties for the interaction in the Send
Interaction service.

— A region shall be used for subscription of an interaction class if the federate has used the
interaction class and region as arguments in the Subscribe Interaction Class With Region service

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

149

for the region. Subsequently invoking the Unsubscribe Object Class With Region service for the
same region shall cause the region not to be used for subscription of that interaction class.

A region that is used for subscription of an interaction class shall be a sub-space of the routing
space to which the interaction class is explicitly bound in the FED.

The default region shall be used for subscription of an interaction class if the federate has used the
interaction class as an argument in the Subscribe Interaction Class service. Subsequently invoking
the Unsubscribe Object Class service for the same interaction class shall cause the default region
not to be used for subscription of that interaction class.

A federate shall use a region for subscription to establish requirements for receiving the associated
interaction class.

A region used for update of instance attributes or for sending interactions shall be called an update region.

A region used for subscription of either class attributes or interaction classes shall be called a subscription
region.

An update region and a subscription region shall overlap if and only if the regions are bound to the same
routing space and the corresponding extent sets overlap. Two extent sets shall overlap if there is an extent
in each set, such that the two extents overlap. Two extents shall overlap if all their ranges overlap
pairwise. Two ranges A = [alower, aupper) and B = [blower, bupper) shall overlap, if and only if either
alower = blower or (alower < bupper and blower < aupper).

Routing spaces, regions, and the usage for update or subscription by federates shall determine to which
federates the RTI distributes data. Whenever an update region in either the owning federate (for
invocations of the Update Attribute Values service) or the sending federate (for invocations of the Send
Interaction service) and a subscription region in the subscribing federate overlap, the RTI shall ensure
that the updated instance attribute values are reflected and the sent interactions are received. Figure 13 is
an example of a routing space with two dimensions.

The usage of dimensions for the specification of data distribution properties and requirements shall be left
to the federation. The effects of DDM services shall be independent of federation time.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

150

PLACE

Figure 13—Routing space of two dimensions

HERE

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

151

9.2 Create Region

The Create Region service shall create a region that has the dimensions of the specified routing space and
the specified number of extents. The extent set shall delineate the region within the routing space. The
region may be used for either update or subscription.

Supplied Arguments
— Routing space designator
— Extents

Returned Arguments
— Region

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The routing space is defined in the FED.

Post-conditions
— A region exists that has the dimensions of the specified routing space.

Exceptions
— The routing space is not defined in the FED.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Register Object Instance With Region
— Associate Region For Updates
— Subscribe Object Class Attributes With Region
— Subscribe Interaction Class With Region
— Send Interaction With Region
— Modify Region
— Delete Region

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

152

9.3 Modify Region

The Modify Region service shall inform the RTI about changes to the extent set of the region.

Supplied Arguments
— Region
— Extents

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The region exists.

Post-conditions
— The region has a new delineation.

Exceptions
— The region is not known.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Create Region

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

153

9.4 Delete Region

The Delete Region service shall delete the specified region. A region in use for subscription or update
shall not be deleted.

Supplied Arguments
— Region

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The region exists.
— The region is not in use.

Post-conditions
— The region no longer exists.

Exceptions
— The region is not known.
— The region is in use.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Create Region

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

154

9.5 Register Object Instance With Region

The Register Object Instance With Region service shall create a unique object instance designator and
link it with an object instance of the supplied class. All instance attributes whose corresponding class
attributes are currently published by the registering federate shall be set as owned by the registering
federate.

This service shall be used to create an object instance and simultaneously associate update regions with
attributes of that object instance. This service shall be an atomic operation that can be used in place of
Register Object Instance followed by Associate Region For Updates. Those instance attributes whose
corresponding class attributes are currently published but are not supplied in the service invocation shall
be associated with the default regions in the routing spaces to which the class attributes are bound.

If the optional object instance name argument is supplied, that name shall be associated with the object
instance.

Supplied Arguments
— Object class designator
— Set of attribute designator/region pairs
— Optional object instance name

Returned Arguments
— Object instance designator

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The object class is defined in the FED.
— The federate is publishing the object class.
— The class attributes are available.
— The federate is publishing the specified class attributes of the specified object class.
— The regions exist.
— For each class attribute/region pair, the routing space denoted by the region is the routing space

bound to the class attribute in the FED.
— If the optional object instance name argument is supplied, that name is unique.

Post-conditions
— The returned object instance designator is associated with the object instance.
— The federate owns the instance attributes that are currently published for the specified object class.
— The specified instance attributes are associated with the respective regions for future Update

Attribute Values service invocations.
— If the optional object instance name argument is supplied, that name is associated with the object

instance.

Exceptions
— The object class is not defined in FED.
— The federate is not publishing the object class.
— The class attribute is not available at the known class of the object instance.
— The federate is not publishing the class attribute.
— The region is not known.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

155

— The routing space denoted by region is not the one bound to the class attribute in the FED.
— The object instance name is not unique.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Publish Object Class
— Register Object Instance
— Create Region
— Discover Object †
— Attribute Ownership Acquisition Notification †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

156

9.6 Associate Region For Updates

The Associate Region For Updates service shall associate a region to be used for updates with instance
attributes of a specific object instance.

Associating a region with an instance attribute shall mean that the federate shall ensure that the properties
of the instance attribute fall within the extents of the associated region at the time when an Update
Attribute Values service is invoked.

The association shall be used by the Update Attribute Values service to route data to subscribers whose
subscription regions overlap the specified update region. Based on the object instance and the specified
region, this service shall perform
— An addition to the group of associations if the object instance/region pair had no attribute set linked

with it, or
— A replacement in the group of associations if there is an attribute set currently linked with the

object instance/region pair.

The Unassociate Region For Updates service shall be used to remove an established association from the
group of associations.

Those instance attributes that are implicitly unassociated by the invocation shall be associated with the
default region.

Supplied Arguments
— Object instance designator
— Set of attribute designator/region pairs

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The object instance exists.
— The class attributes are available.
— The federate owns the specified instance attributes.
— The regions exist.
— For each class attribute/region pair, the routing space denoted by the region is the routing space

bound to the class attribute in the FED.

Post-conditions
— The specified instance attributes are associated with the respective regions for future invocations of

the Update Attribute Values service.

Exceptions
— The object instance is not known.
— The class attribute is not available.
— The federate does not own the instance attribute.
— The region is not known.
— The routing space denoted by region is not the one bound to the class attribute in the FED.
— The federate is not a federation execution member.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

157

— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Create Region
— Modify Region
— Update Attribute Values
— Unassociate Region For Updates

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

158

9.7 Unassociate Region For Updates

The Unassociate Region For Updates service shall remove the association between the region and all
instance attributes associated with that region.

The instance attributes that are unassociated by the invocation shall be associated with the default region.

Supplied Arguments
— Object instance designator
— Region

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The object instance exists.
— The region is associated with attributes of the object instance.

Post-conditions
— The region is no longer associated with any attributes of the object instance.

Exceptions
— The object instance is not known.
— The region was not associated with attributes of the object instance.
— The region is not known.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Associate Region For Updates
— Create Region
— Update Attribute Values
— Register Object Instance With Region

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

159

9.8 Subscribe Object Class Attributes With Region

The Subscribe Object Class Attributes With Region service shall specify an object class for which the RTI
is to begin notifying the federate of discovery of instantiated object instances when at least one of that
instance’s attributes are in scope. This service and subsequent related RTI operations shall behave
similarly to Subscribe Object Class Attributes and subsequent related RTI operations as described in 5.6.
This service shall provide additional functionality in that the intersection of the relevant subscription and
update regions affect the subsequent RTI operations, as described in the beginning of this clause.

There shall be only one attribute set linked with each object class/region pair in the group of subscriptions
that is defined to support data distribution management. Based on each of the implied object class/region
pairs, this service shall perform one of the following actions with the specified attribute set:
— An addition to the group of subscriptions if the object class/region pair has no attribute set linked

with it, or
— A replacement in the group of subscriptions if there is currently an attribute set linked with the

object class/region pair.

Invoking this service with an empty set of attributes shall be equivalent to invoking the Unsubscribe
Object Class With Region service with the relevant object class.

If the optional passive subscription indicator indicates that this is a passive subscription,
a) the invocation of this service shall not cause the Start Registration For Object Class † service or the

Turn Updates On For Object Instance † service to be invoked at any other federate and
b) if this invocation replaces a previous subscription that was active rather than passive, invocation of

this service may cause the Stop Registration for Object Class † service or the Turn Updates Off For
Object Instance † service to be invoked at one or more other federates.

If the optional passive subscription indicator is not present or indicates that this is an active subscription,
a) the invocation of this service may cause the Start Registration For Object Class † service or the Turn

Updates On For Object Instance † service to be invoked at one or more other federates and
b) if this invocation replaces a previous subscription that was active rather than passive, invocation of

this service may cause the Turn Updates Off For Object Instance † service to be invoked at one or
more other federates.

Supplied Arguments
— Object class designator
— Set of attribute designator/region pairs
— Optional passive subscription indicator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The object class is defined in the FED.
— The class attributes are available.
— The regions exist.
— For each class attribute/region pair, the routing space denoted by the region is the routing space

bound to the class attribute in the FED.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

160

Post-conditions
— The RTI has been informed of the federate’s requested subscription.

Exceptions
— The object class is not defined in the FED.
— The class attribute is not available.
— The region is not known.
— The routing space denoted by region is not the one bound to the class attribute in the FED.
— Invalid passive subscription indicator.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Unsubscribe Object Class With Region
— Publish Object Class
— Discover Object †
— Attributes In Scope †
— Reflect Attribute Values †
— Create Region
— Start Registration For Object Class †
— Stop Registration For Object Class †
— Turn Updates On For Object Instance †
— Turn Updates Off For Object Instance †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

161

9.9 Unsubscribe Object Class With Region

The Unsubscribe Object Class With Region service shall inform the RTI that it shall stop notifying the
federate of object instance discoveries for the specified object class. The unsubscribe shall be confined to
all subscriptions using the specified region.

Supplied Arguments
— Object class designator
— Region

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The object class is defined in the FED.
— The federate is subscribed to the object class for the region.
— The region exists.

Post-conditions
— The RTI has been informed of the federate’s requested unsubscription.

Exceptions
— The object class is not defined in the FED.
— The region is not known.
— The federate is not subscribed to the object class for the region.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Subscribe Object Class Attributes With Region

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

162

9.10 Subscribe Interaction Class With Region

The Subscribe Interaction Class With Region service shall specify the class of interactions that should be
delivered to the federate, taking the region into account. This service and subsequent related RTI
operations shall behave similarly to Subscribe Interaction Class and subsequent related RTI operations as
described in 5.8. This service shall provide additional functionality in that the intersection of the relevant
subscription and interaction send regions affect the subsequent RTI operations, as described in the
beginning of this clause.

If the specified region is currently in the group of regions associated with the specified interaction class
subscription, this service is a no-op; otherwise an addition to the group shall be performed.

If the optional passive subscription indicator indicates that this is a passive subscription, the invocation of
this service shall not cause the Turn Interactions On † service to be invoked at any other federate and

If the optional passive subscription indicator is not present or indicates that this is an active subscription,
the invocation of this service may cause the Turn Interactions On † service to be invoked at one or more
other federates.

Supplied Arguments
— Interaction class designator
— Region
— Optional passive subscription indicator

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The interaction class is defined in the FED.
— The region exists.
— The routing space denoted by the region is the routing space bound to the interaction class in the

FED.

Post-conditions
— The RTI has been informed of the federate’s requested subscription.

Exceptions
— The interaction class is not defined in the FED.
— The region is not known.
— The routing space denoted by region is not the one bound to the interaction class in the FED.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Subscribe Interaction Class
— Unsubscribe Interaction Class with Region
— Publish Interaction Class

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

163

— Receive Interaction †
— Create Region
— Turn Interactions On †
— Turn Interactions Off †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

164

9.11 Unsubscribe Interaction Class With Region

The Unsubscribe Interaction Class With Region service shall inform the RTI no longer to notify the
federate of sent interactions of the specified class that are in the specified region.

Supplied Arguments
— Interaction class designator
— Region

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The interaction class is defined in the FED.
— The federate is subscribed to the interaction class for the region.
— The region exists.

Post-conditions
— The RTI has been informed of the federate’s requested unsubscription.

Exceptions
— The interaction class is not defined in the FED.
— The region is not known.
— The federate is not subscribed to the interaction class for the region.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Subscribe Interaction Class with Region

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

165

9.12 Send Interaction With Region

The Send Interaction With Region service shall send an interaction into the federation. The interaction
parameters may be those in the specified class and all super-classes, as defined in the FED. The region
shall be used to limit the scope of potential receivers of the interaction. The service shall return a
federation-unique event retraction designator. An event retraction designator shall be returned only if the
federation time argument is supplied.

Supplied Arguments
— Interaction class designator
— Set of parameter-designator/value pairs
— User-supplied tag
— Region
— Optional federation time

Returned Arguments
— Optional event retraction designator

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The interaction class is defined in the FED.
— The federate is publishing the interaction class.
— The interaction parameters are available.
— The region exists.
— The routing space denoted by the region is the routing space bound to the interaction class in the

FED.

Post-conditions
— The RTI has received the interaction.

Exceptions
— The federate is not publishing the specified interaction class.
— The interaction class is not defined in FED.
— The interaction parameter is not available.
— The federation time is invalid (if optional time argument is supplied).
— The region is not known.
— The routing space denoted by region is not the one bound to the interaction class in the FED.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Time Advance Request
— Next Event Request
— Time Advance Grant †
— Receive Interaction †
— Publish Interaction Class

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

166

— Retract
— Create Region

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

167

9.13 Request Attribute Value Update With Region

The Request Attribute Value Update With Region service shall be used to stimulate the update of values of
specified attributes. When this service is used, the RTI shall solicit the current values of the specified
attributes from their owners using the Provide Attribute Value Update † service. When an object class is
specified, the RTI shall solicit the specified attributes for all the object instances of that class. When an
object instance designator is specified, the RTI shall solicit the specified attributes for the particular
object. The resulting Provide Attribute Value Update † service invocations issued by the RTI shall be
consistent with the region arguments to this service. An invocation shall be consistent with the region
arguments if the instance attributes in an updating federate are associated with a region that overlaps the
corresponding region specified as an argument to this service. The federation time of any resulting Reflect
Attribute Values † service invocations shall be determined by the updating federate.

Supplied Arguments
— Object instance designator or object class designator
— Set of attribute designator/region pairs

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The object instance exists (when first argument is an object instance designator).
— The object class is defined in the FED (when first argument is an object class designator).
— The class attributes are available.
— The regions exist.
— For each class attribute/region pair, the routing space denoted by the region is the routing space

bound to the class attribute in the FED.

Post-conditions
— The request for the updated attribute values has been received by the RTI.

Exceptions
— The object is not known.
— The object class is not defined in the FED.
— The class attribute is not available.
— The region is not known.
— The routing space denoted by region is not the one bound to the class attribute in the FED.
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Provide Attribute Value Update †
— Update Attribute Values
— Create Region

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

168

9.14 Change Thresholds †

The Change Thresholds † service shall provide the federate with the new values of the thresholds for each
of the dimensions of a routing space.

Supplied Arguments
— Region
— Set of thresholds

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.
— The region exists.

Post-conditions
— The federate is informed of the new threshold values for the region.

Exceptions
— The region is not known.
— Federate internal error

Related Services
— Create Region
— Modify Region

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

169

10. Support services

10.1 Overview

This clause describes miscellaneous services utilized by federates for performing such actions as
— Name-to-handle and handle-to-name transformation
— Setting advisory switches

All class name arguments shall be completely specified, including all super-class names.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

170

10.2 Get Object Class Handle

The Get Object Class Handle service shall return the object class handle associated with the supplied
object class name.

Supplied Arguments
— Object class name

Returned Arguments
— Object class handle

Pre-conditions
— The specified object class is defined in the FED.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested object class handle.

Exceptions
— The object class is not defined in the FED.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Object Class Name

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

171

10.3 Get Object Class Name

The Get Object Class Name service shall return the object class name associated with the supplied object
class handle.

Supplied Arguments
— Object class handle

Returned Arguments
— Object class name

Pre-conditions
— The specified object class is defined in the FED.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested object class name.

Exceptions
— The object class is not defined in the FED.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Object Class Handle

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

172

10.4 Get Attribute Handle

The Get Attribute Handle service shall return the attribute handle associated with the supplied attribute
name and object class.

Supplied Arguments
— Attribute name
— Object class handle

Returned Arguments
— Attribute handle

Pre-conditions
— The specified object class is defined in the FED.
— The specified class attribute is an available attribute of the specified object class.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested attribute handle.

Exceptions
— The object class is not defined in the FED.
— The specified object class attribute is not an available attribute of the specified object class.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Attribute Name

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

173

10.5 Get Attribute Name

The Get Attribute Name service shall return the attribute name associated with the supplied attribute
handle and object class.

Supplied Arguments
— Attribute handle
— Object class handle

Returned Arguments
— Attribute name

Pre-conditions
— The specified object class is defined in the FED.
— The specified class attribute is an available attribute of the specified object class.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested attribute name

Exceptions
— The object class is not defined in the FED.
— The specified object class attribute is not an available attribute of the specified object class.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Attribute Handle

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

174

10.6 Get Interaction Class Handle

The Get Interaction Class Handle service shall return the interaction class handle associated with the
supplied interaction class name.

Supplied Arguments
— Interaction class name

Returned Arguments
— Interaction class handle

Pre-conditions
— The specified interaction class is defined in the FED.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested interaction class handle.

Exceptions
— The interaction class is not defined in the FED.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Interaction Class Name

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

175

10.7 Get Interaction Class Name

The Get Interaction Class Name service shall return the interaction class name associated with the
supplied interaction class handle.

Supplied Arguments
— Interaction class handle

Returned Arguments
— Interaction class name

Pre-conditions
— The specified interaction class is defined in the FED.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested interaction class name.

Exceptions
— The interaction class is not defined in the FED.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Interaction Class Handle

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

176

10.8 Get Parameter Handle

The Get Parameter Handle service shall return the parameter handle associated with the supplied
parameter name and interaction class.

Supplied Arguments
— Parameter name
— Interaction class handle

Returned Arguments
— Parameter handle

Pre-conditions
— The specified interaction class is defined in the FED.
— The specified parameter is an available parameter of the specified interaction class.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested parameter handle.

Exceptions
— The interaction class is not defined in the FED.
— The parameter is not defined in the FED.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Parameter Name

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

177

10.9 Get Parameter Name

The Get Parameter Name service shall return the parameter name associated with the supplied parameter
handle and interaction class.

Supplied Arguments
— Parameter handle
— Interaction class handle

Returned Arguments
— Parameter name

Pre-conditions
— The specified interaction class is defined in the FED.
— The specified parameter is an available parameter of the specified interaction class.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested parameter name.

Exceptions
— The interaction class is not defined in the FED.
— The parameter is not defined in the FED.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Parameter Handle

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

178

10.10 Get Object Instance Handle

The Get Object Instance Handle service shall return the handle of the object instance with the supplied
name.

Supplied Arguments
— Object instance name

Returned Arguments
— Object instance handle

Pre-conditions
— The object instance with the specified name exists.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested object instance handle.

Exceptions
— The object instance is not known.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Object Instance Name

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

179

10.11 Get Object Instance Name

The Get Object Instance Name service shall return the name of the object instance with the supplied
handle.

Supplied Arguments
— Object instance handle

Returned Arguments
— Object instance name

Pre-conditions
— The object instance with the specified name exists.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested object instance name.

Exceptions
— The object instance is not known.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Object Instance Handle

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

180

10.12 Get Routing Space Handle

The Get Routing Space Handle service shall return the routing space handle associated with the supplied
routing space name.

Supplied Arguments
— Routing space name

Returned Arguments
— Routing space handle

Pre-conditions
— The specified routing space is defined in the FED.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested routing space handle.

Exceptions
— The routing space is not defined in the FED.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Routing Space Name

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

181

10.13 Get Routing Space Name

The Get Routing Space Name service shall return the routing space name associated with the supplied
routing space handle.

Supplied Arguments
— Routing space handle

Returned Arguments
— Routing space name

Pre-conditions
— The specified routing space is defined in the FED.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested routing space name.

Exceptions
— The routing space is not defined in the FED.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Routing Space Handle

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

182

10.14 Get Dimension Handle

The Get Dimension Handle service shall return the dimension handle associated with the supplied
dimension name and routing space.

Supplied Arguments
— Dimension name
— Routing space handle

Returned Arguments
— Dimension handle

Pre-conditions
— The specified routing space is defined in the FED.
— The specified dimension is defined in the specified routing space in the FED.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested dimension handle.

Exceptions
— The routing space is not defined in the FED.
— The dimension is not defined in the FED.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Dimension Name

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

183

10.15 Get Dimension Name

The Get Dimension Name service shall return the dimension name associated with the supplied dimension
handle and routing space.

Supplied Arguments
— Dimension handle
— Routing space handle

Returned Arguments
— Dimension name

Pre-conditions
— The specified routing space is defined in the FED.
— The specified dimension is defined in the specified routing space in the FED.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested dimension name.

Exceptions
— The routing space is not defined in the FED.
— The dimension is not defined in the FED.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Dimension Handle

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

184

10.16 Get Attribute Routing Space Handle

The Get Attribute Routing Space Handle service shall return the routing space associated with the
supplied attribute and object class.

Supplied Arguments
— Attribute handle
— Object class handle

Returned Arguments
— Routing space handle

Pre-conditions
— The specified object class is defined in the FED.
— The specified class attribute is an available attribute of the specified object class.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested routing space handle.

Exceptions
— The object class is not defined in the FED.
— The specified object class attribute is not an available attribute of the specified object class.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— None

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

185

10.17 Get Object Class

The Get Object Class service shall return the known object class of the supplied object instance.

Supplied Arguments
— Object instance handle

Returned Arguments
— Object class handle

Pre-conditions
— The specified object instance exists.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the known object class of the specified object instance.

Exceptions
— The object instance is not known.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— None

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

186

10.18 Get Interaction Routing Space Handle

The Get Interaction Routing Space Handle service shall return the routing space associated with the
supplied interaction class.

Supplied Arguments
— Interaction class handle

Returned Arguments
— Routing space handle

Pre-conditions
— The specified interaction class is defined in the FED.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested routing space handle.

Exceptions
— The interaction is not defined in the FED.
— The federate is not a federation execution member.
— RTI internal error

Related Services
— None

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

187

10.19 Get Transportation Handle

The Get Transportation Handle service shall return the transportation handle associated with the supplied
transportation name.

Supplied Arguments
— Transportation name

Returned Arguments
— Transportation handle

Pre-conditions
— The transportation name is defined.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested transportation handle.

Exceptions
— Name not found
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Transportation Name

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

188

10.20 Get Transportation Name

The Get Transportation Name service shall return the transportation name associated with the supplied
transportation handle.

Supplied Arguments
— Transportation handle

Returned Arguments
— Transportation name

Pre-conditions
— The transportation handle is defined.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested transportation name.

Exceptions
— Invalid transportation handle
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Transportation Handle

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

189

10.21 Get Ordering Handle

The Get Ordering Handle service shall return the ordering handle associated with the supplied ordering
name.

Supplied Arguments
— Ordering name

Returned Arguments
— Ordering handle

Pre-conditions
— The ordering name is defined.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested ordering handle.

Exceptions
— Name not found
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Ordering Name

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

190

10.22 Get Ordering Name

The Get Ordering Name service shall return the ordering name associated with the supplied ordering
handle.

Supplied Arguments
— Ordering handle

Returned Arguments
— Ordering name

Pre-conditions
— The ordering handle is defined.
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The federate has the requested ordering name.

Exceptions
— Invalid ordering handle
— The federate is not a federation execution member.
— RTI internal error

Related Services
— Get Ordering Handle

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

191

10.23 Enable Class Relevance Advisory Switch

The Enable Class Relevance Advisory Switch service shall set the Class Relevance Advisory switch on.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The Class Relevance Advisory switch is turned on.

Exceptions
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Disable Class Relevance Advisory Switch
— Start Registration For Object Class †
— Stop Registration For Object Class †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

192

10.24 Disable Class Relevance Advisory Switch

The Disable Class Relevance Advisory Switch service shall set the Class Relevance Advisory Switch off.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The Class Relevance Advisory switch is turned off.

Exceptions
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Enable Class Relevance Advisory Switch
— Start Registration For Object Class †
— Stop Registration For Object Class †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

193

10.25 Enable Attribute Relevance Advisory Switch

The Enable Attribute Relevance Advisory Switch service shall set the Attribute Relevance Advisory switch
on.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The Attribute Relevance Advisory switch is turned on.

Exceptions
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Disable Attribute Relevance Advisory Switch
— Turn Updates On For Object Instance †
— Turn Updates Off For Object Instance †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

194

10.26 Disable Attribute Relevance Advisory Switch

The Disable Attribute Relevance Advisory Switch service shall set the Attribute Relevance Advisory
switch off.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The Attribute Relevance Advisory switch is turned off.

Exceptions
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Enable Attribute Relevance Advisory Switch
— Turn Updates On For Object Instance †
— Turn Updates Off For Object Instance †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

195

10.27 Enable Attribute Scope Advisory Switch

The Enable Attribute Scope Advisory Switch service shall set the Attribute Scope Advisory switch on.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The Attribute Scope Advisory switch is turned on.

Exceptions
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Disable Attribute Scope Advisory Switch
— Attributes In Scope †
— Attributes Out Of Scope †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

196

10.28 Disable Attribute Scope Advisory Switch

The Disable Attribute Scope Advisory Switch service shall set the Attribute Scope Advisory switch off.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The Attribute Scope Advisory switch is turned off.

Exceptions
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Enable Attribute Scope Advisory Switch
— Attributes In Scope †
— Attributes Out Of Scope †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

197

10.29 Enable Interaction Relevance Advisory Switch

The Enable Interaction Relevance Advisory Switch service shall set the Interaction Relevance Advisory
switch on.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The Interaction Relevance Advisory switch is turned on.

Exceptions
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Disable Interaction Relevance Advisory Switch
— Tune Interactions On †
— Tune Interactions Off †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

198

10.30 Disable Interaction Relevance Advisory Switch

The Disable Interaction Relevance Advisory Switch service shall set the Interaction Relevance Advisory
switch off.

Supplied Arguments
— None

Returned Arguments
— None

Pre-conditions
— The federation execution exists.
— The federate is joined to that federation execution.

Post-conditions
— The Interaction Relevance Advisory switch is turned off.

Exceptions
— The federate is not a federation execution member.
— Save in progress
— Restore in progress
— RTI internal error

Related Services
— Enable Interaction Relevance Advisory Switch
— Tune Interactions On †
— Tune Interactions Off †

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

199

11. Management object model (MOM)

Management object model (MOM) facilities shall be used by federates and the RTI to provide insight into
the operations of federates and the RTI and to control the functioning of the RTI, the federation, and
individual federates. The ability to monitor and control elements of a federation shall be required for
proper functioning of a federation execution.

MOM shall satisfy these requirements by utilizing predefined HLA constructs: objects and interactions. In
effect, the RTI shall publish object classes and shall register and update values of attributes of object
instances; shall subscribe to and receive some interaction classes; and shall publish and send other
interaction classes. A federate charged with controlling a federation execution shall subscribe to the object
classes, reflect the updates, publish and send some interaction classes, and subscribe to and receive other
interaction classes.

The MOM object class structure is depicted in Figure 14.

Manager

FederationFederate (extensions)

Figure 14—MOM object class structure

— Object class Manager.Federate shall contain attributes that describe the state of a federate. The RTI
shall publish the class and register one object instance of this class for each federate in the
federation. The RTI shall update the information periodically, based on timing data provided in
Manager.Federate.Adjust interactions. Information shall be contained in an object instance that
includes identifying information about the federate, measures of the federate’s time state, and the
status of queues maintained by the RTI for the federate.

— Object class Manager.Federation shall contain attributes that describe the state of the federation
execution. The RTI shall publish the class and register one object instance of this class for the
federation.

The MOM interaction class structure is depicted in Figure 15.
— Interaction classes that are subclasses of Manager.Federate.Adjust shall be acted upon by the RTI.

They shall permit a managing federate to adjust the way the RTI performs when responding to
another federate and how it shall respond and report to the managing federate.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

200

Manager

Federate

Report ServiceAdjust Request

(extensions)

Figure 15—MOM interaction class structure

— Interaction classes that are subclasses of Manager.Federate.Request shall be acted upon by the RTI.
They shall cause the RTI to send subclasses of Manager.Federate.Report interaction class.

— Interaction classes that are subclasses of Manager.Federate.Report shall be sent by the RTI. They
shall respond to interaction classes that are subclasses of Manager.Federate.Request class
interactions. They shall describe some aspect of the federate such as its object class subscription
tree.

— Interaction classes that are subclasses of Manager.Federate.Service shall be acted upon by the RTI.
They shall invoke RTI services on behalf of another federate. For services that are normally
invoked by a federate, they shall cause the RTI to react as if the service was invoked by the federate
(for example, a managing federate could change the time-regulating state of another federate).
Services that are normally callbacks from the RTI to a federate shall cause the RTI to invoke the
callback.

All MOM object classes, interaction classes, attributes, and parameters shall be predefined in the FED file.
These definitions may not be revised.

MOM definitions may be extended, however; they may be augmented with additional subclasses, class
attributes, or parameters. These new elements shall not be acted upon directly by the RTIthey shall be
acted upon by federates in the federation.

The MOM object classes may be extended by adding subclasses or class attributes. Without extensions, the
RTI shall publish Manager.Federate and Manager.Federation classes with predefined MOM class
attributes, register an instance, and update the values of the predefined instance attributes. The RTI shall
not subscribe to any object class. Valid methods for extending the MOM object classes shall be
— Subclasses may be added to any MOM object class. Here, the federate shall publish the object class

and its attributes, register an instance of the new class, and update values of instance attributes of
the object instance according to dictates of the federation execution. Note that the instance of the
subclass shall be separate from the MOM object instance that is registered by the RTI. Therefore,
instance attributes that are inherited by the extension subclass from the MOM predefined class shall
not be updated by the RTI.

— Attributes may be added to any MOM object class. Here, the federate shall publish the object class
with the new class attributes; and shall subscribe to the object class and attributes in it, discover and
reflect updates to learn the object instance in question, and update the values of the new instance
attributes using the discovered object instance designator. Note that the instance that the federate
shall update with the new instance attributes shall be the same as the MOM object instance that is

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

201

registered by the RTI.

The MOM interaction classes may be extended by adding subclasses or parameters. There shall be three
categories of extension of MOM interaction classes:
a) Classes of interaction that the RTI shall send (subclasses of Manager.Federate.Report). The RTI

shall publish at the MOM leaf-class level (e.g., Manager.Federate.Report.Alert). It shall send
interactions containing all predefined parameters for that interaction class. Valid methods for
extending this type of MOM interaction class shall be

 Subclasses may be added to these MOM interaction classes. The RTI shall not send
interactions of these subclasses. If federates subscribe to the subclass, they shall receive the full
interaction. If they subscribe to the class of which the extension is a subclass, the interaction
shall be promoted to the subscribed class and any new parameters shall be lost.

 Parameters may be added to any MOM interaction class. Interactions of these classes that are
sent by the RTI shall not contain the new parameters.

b) Classes of interaction that the RTI shall receive (subclasses of Manager.Federate.Adjust,
Manager.Federate.Request, and Manager.Federate.Service). The RTI shall subscribe at the MOM
leaf-class level (e.g., Manager.Federate.Adjust.SetTiming). It shall receive these interactions and
process all predefined parameters for that interaction class. Valid methods for extending this type of
MOM interaction class shall be

 Subclasses may be added to any MOM interaction class. If a federate sends an interaction of
this class, the RTI shall receive a promoted version that shall contain only the parameters of
the predefined interaction class.

 Parameters may be added to any MOM interaction class. If a federate sends an interaction with
extra parameters, the RTI shall receive the new parameters but shall ignore them and process
only the predefined parameters.

c) Classes of interaction that shall be neither sent nor received by the RTI. These classes of interaction
shall be ignored by the RTI and may be formed in any way that is consistent with FOM development.

11.1 MOM objects

The MOM shall contain two predefined object classes: Manager.Federate and Manager.Federation, and
the attributes associated with them.

The object classes are described in the following paragraphs. No instance attributes of these classes shall
be transferable; the RTI shall never release ownership of the instance attributes.

NOTE—the data type of all instance attributes shall be text; the tables defining the attributes shall present a more
specific data type—this shall represent the data type from which the text data shall be translated. For enumerated
attributes, the values are presented in the form that shall be provided in the RTI API; specific values shall depend on
the computer-language version of the API.

11.1.1 Object class Manager.Federation

The object class Manager.Federation shall contain RTI state variables relating to a federation execution.
The RTI shall publish object class Manager.Federation and shall register one object instance for the
federation execution. It shall not automatically update the values of the instance attributes; a federate shall
use a Request Attribute Value Update service to obtain values for the instance attributes.

Table 4—Object class Manager.Federation

Attribute Type Description

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

202

Attribute Type Description

FederationName string Name of the federation to which the federate belongs

FederatesInFederation handle list Comma-separated list of the designators of federates that
have joined the federation execution (null string if none)

RTIversion string Version of the RTI software

FEDid string Identifier associated with the FED data used by the
federation

LastSaveName string Name associated with the last federation state save (null if
no saves have occurred)

LastSaveTime time Logical time at which the last federation state save
occurred (zero if no saves have occurred)

NextSaveName string Name associated with the next federation state save (null if
no saves are scheduled)

NextSaveTime time Logical time at which the next federation state save is
scheduled (zero if no saves are scheduled)

11.1.2 Object class Manager.Federate

This object class Manager.Federate shall contain RTI state variables relating to a federate. The RTI shall
publish object class Manager.Federate and shall register one object instance for each federate in a
federation. Dynamic attributes that shall be contained in an object instance shall be updated periodically,
where the period should be determined by an interaction of the class Manager.Federate.Adjust.SetTiming.
If this value is never set or is set to zero, no periodic update shall be performed by the RTI.

Table 5—Object class Manager.Federate

Attribute Type Description

Federate handle Designator of the federate returned by a join Federa-
tionExecution service invocation

FederateType string Type of the federate specified by the federate when it joined
the federation

FederateName string Name of the federate specified by the federate when it joined
the federation

FederateHost string Host name of the computer on which the federate is
executing

RTIversion string Version of the RTI software being used

FEDid string Identifier associated with the FED data used by the federate

TimeConstrained boolean Whether the time advance of the federate is constrained by
other federates

TimeRegulating boolean Whether the federate influences the time advance of other
federates

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

203

Attribute Type Description

AsynchronousDelivery boolean Whether the RTI shall deliver receive-order messages to the
federate while the federate’s time manager state is “Idle”
(only valid if the federate is time-constrained)

FederateState enumerated State of the federate; valid values are
— Running
— Save pending
— Saving
— Restore pending
— Restoring

TimeManagerState enumerated State of the federate’s time manager state; valid values are

— Idle
— Advance pending

FederateTime time Logical time of the federate (zero if logical time is not used)

Lookahead time Minimum duration into the future that a TSO event will be
scheduled (zero if logical time is not used)

LBTS time Logical time of the LTBS (zero if logical time is not used)

MinNextEventTime time Minimum of the LBTS and the head of the TSO queue (zero
if logical time is not used)

ROlength long Number of events stored in the RO queue

TSOlength long Number of events stored in the TSO queue

ReflectionsReceived long Total number of reflections received by the federate

UpdatesSent long Total number of updates sent by the federate

InteractionsReceived long Total number of interactions received by the federate

InteractionsSent long Total number of interactions sent by the federate

ObjectsOwned long Total number of object instances whose PrivilegeToDelete
attribute is owned by the federate

ObjectsUpdated long Total number of object instances for which the federate
updates at least one attribute value

ObjectsReflected long Total number of object instances for which the federate
reflects updates of at least one attribute

11.2 MOM interactions

The MOM shall contain a single predefined interaction class, Manager, and a single subclass of that class,
Federate. Subordinate to that level shall be four subclasses: Manager.Federate.Adjust,
Manager.Federate.Request, Manager.Federate.Report, and Manager.Federate.Service. Specific
interactions, sent and received by the RTI, shall be subclasses of these classes and shall be described in the
following paragraphs.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

204

Note that the data type of all parameters shall be text; the tables in the following paragraphs that describe
interaction parameters present a more specific data type. This more specific type shall represent the data
type from which the text data could be generated (itoa in C, for example). For enumerated parameters, the
values shall be presented in the form that shall be depicted in the RTI API; specific values shall depend on
the computer-language version of the API.

11.2.1 Interaction class Manager.Federate.Adjust

The interaction class Manager.Federate.Adjust shall permit a federate to adjust the RTI state variables
associated with another federate. Interactions that are subclasses of this interaction class shall be
— SetTiming
— ModifyAttributeState
— SetServiceReporting
— SetExceptionLogging

11.2.1.1 Interaction subclass SetTiming

The interaction subclass SetTiming shall adjust the time period between updates of the Manager.Federate
object instance for the federate. If this interaction is never sent, the RTI shall not perform periodic
updates.

Table 6—Interaction subclass SetTiming

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ReportPeriod long Number of seconds between updates of instance attribute
values of the Federate object instance (A zero value causes
periodic updates to cease.)

11.2.1.2 Interaction subclass ModifyAttributeState

The interaction subclass ModifyAttributeState shall modify the ownership state of an attribute of an object
instance for the federate.

Table 7—Interaction subclass ModifyAttributeStat

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectInstance string Name of the object instance whose attribute state is being
changed

Attribute handle Designator of the instance attribute whose state is being
changed

AttributeState enumerated Desired state for the attribute of the object instance; valid
values are
— Owned
— Unowned

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

205

11.2.1.3 Interaction subclass SetServiceReporting

The interaction subclass SetServiceReporting shall specify whether to report service invocations via
Manager.Federate.Report.ReportServiceInvocation interactions.

Table 8—Interaction subclass SetServiceReporting

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ReportingState boolean Whether the RTI should report service invocations

11.2.1.4 Interaction subclass SetExceptionLogging

The interaction subclass SetExceptionLogging shall specify whether to log RTI exceptions to a file.

Table 9—Interaction subclass SetExceptionLogging

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

LoggingState boolean Whether the RTI should log exceptions

11.2.2 Interaction class Manager.Federate.Request

The interaction class Manager.Federate.Request shall permit a federate to request RTI data about another
federate. Interactions that are subclasses of this interaction class shall be
— RequestPublications
— RequestSubscriptions
— RequestObjectsOwned
— RequestObjectsUpdated
— RequestObjectsReflected
— RequestUpdatesSent
— RequestInteractionsSent
— RequestReflectionsReceived
— RequestInteractionsReceived
— RequestObjectInformation

11.2.2.1 Interaction subclass RequestPublications

The interaction subclass RequestPublications shall request that the RTI send report interactions that shall
contain the publication data of a federate. It shall result in one interaction of class Manager.Federate.Re-
port.ReportInteractionPublication and one interaction of class Manager.Federate.Re-
port.ReportObjectPublication for each object class published.

Table 10—Interaction subclass RequestPublications

Parameter Type Description

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

206

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.2.2 Interaction subclass RequestSubscriptions

The interaction subclass RequestSubscriptions shall request that the RTI send report interactions that shall
contain the subscription data of a federate. It shall result in one interaction of class Manager.Federate.-
Report.ReportInteractionSubscription and one interaction of class Manager.Federate.-
Report.ReportObjectSubscription for each object class published.

Table 11—Interaction subclass RequestSubscriptions

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.2.3 Interaction subclass RequestObjectsOwned

The interaction subclass RequestObjectsOwned shall request that the RTI send a report interaction that
shall contain the object ownership data of a federate. It shall result in one interaction of class Manager.-
Federate.Report.ReportObjectsOwned.

Table 12—Interaction subclass RequestObjectsOwned

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.2.4 Interaction subclass RequestObjectsUpdated

The interaction subclass RequestObjectsUpdated shall request that the RTI send a report interaction that
shall contain the object updating responsibility of a federate. It shall result in one interaction of class Man-
ager.Federate.Report.ReportObjectsUpdated.

Table 13—Interaction subclass RequestObjectsUpdated

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.2.5 Interaction subclass RequestObjectsReflected

The interaction subclass RequestObjectsReflected shall request that the RTI shall send a report interaction
that shall contain the objects for which a federate shall reflect updates of instance attributes. It shall result
in one interaction of class Manager.Federate.Report.ReportObjectsReflected.

Table 14—Interaction subclass RequestObjectsReflected

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

207

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

208

11.2.2.6 Interaction subclass RequestUpdatesSent

The interaction subclass RequestUpdatesSent shall request that the RTI send a report interaction that shall
contain the number of updates that a federate has generated. It shall result in one interaction of class Man-
ager.Federate.Report.ReportUpdatesSent for each transportation type that is used to send updates.

Table 15—Interaction subclass RequestUpdatesSent

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.2.7 Interaction subclass RequestInteractionsSent

The interaction subclass RequestInteractionsSent shall request that the RTI send a report interaction that
shall contain the number of interactions that a federate has generated. It shall result in one interaction of
class Manager.Federate.Report.ReportInteractionsSent for each transportation type that is used to send
interactions.

Table 16—Interaction subclass RequestInteractionsSent

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.2.8 Interaction subclass RequestReflectionsReceived

The interaction subclass RequestReflectionsReceived shall request that the RTI send a report interaction
that shall contain the number of reflections that a federate has received. It shall result in one interaction of
class Manager.Federate.Report.ReportReflectionsReceived for each transportation type used in receiving
reflections.

Table 17—Interaction subclass RequestReflectionsReceived

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.2.9 Interaction subclass RequestInteractionsReceived

The interaction subclass RequestInteractionsReceived shall request that the RTI send a report interaction
that shall contain the number of interactions that a federate has received. It shall result in one interaction
of class Manager.Federate.Report.ReportInteractionsReceived for each transportation type used in
receiving interactions.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

209

Table 18—Interaction subclass RequestInteractionsReceived

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.2.10 Interaction subclass RequestObjectInformation

The interaction subclass RequestObjectInformation shall request that the RTI send a report interaction
that shall contain the information that a federate shall maintain on a single object instance. It shall result
in one interaction of class Manager.Federate.Report.ReportObjectInformation.

Table 19—Interaction subclass RequestObjectInformation

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectInstance string Name of the object instance for which information is being
requested

11.2.3 Interaction class Manager.Federate.Report

The interaction class Manager.Federate.Report shall report RTI data about a federate. The RTI shall send
these interactions in response to interactions of class Manager.Federate.Request. Interactions that are
subclasses of this interaction class shall be
— ReportObjectPublication
— ReportInteractionPublication
— ReportObjectSubscription
— ReportInteractionSubscription
— ReportObjectsOwned
— ReportObjectsUpdated
— ReportObjectsReflected
— ReportUpdatesSent
— ReportReflectionsReceived
— ReportInteractionsSent
— ReportInteractionsReceived
— ReportObjectInformation
— Alert
— ReportServiceInvocation

11.2.3.1 Interaction subclass ReportObjectPublication

The interaction subclass ReportObjectPublication shall be sent by the RTI in response to an interaction of
class Manager.Federate.Request.RequestPublications. It shall report the attributes of one object class
published by the federate. One of these interactions shall be sent for each object class containing attributes
that are published by the federate.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

210

Table 20—Interaction subclass ReportObjectPublication

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

NumberOfClasses long The number of object classes for which the federate publishes
attributes

ObjectClass handle The object class whose publication is being reported

AttributeList handle list Comma-separated list of attributes of ObjectClass that the
federate is publishing (null string if none)

11.2.3.2 Interaction subclass ReportInteractionPublication

The interaction subclass ReportInteractionPublication shall be sent by the RTI in response to an
interaction of class Manager.Federate.Request.RequestPublications. It shall report the interaction classes
published by the federate.

Table 21—Interaction subclass ReportInteractionPublication

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

InteractionClassList handle list Comma-separated list of interaction classes that the federate is
publishing (null string if none)

11.2.3.3 Interaction subclass ReportObjectSubscription

The interaction subclass ReportObjectSubscription shall be sent by the RTI in response to an interaction
of class Manager.Federate.Request.RequestSubscriptions. It shall report the attributes of one object class
subscribed to by the federate. One of these interactions shall be sent for each object class that is subscribed
to by the federate.

Table 22—Interaction subclass ReportObjectSubscription

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

NumberOfClasses long The number of object classes for which the federate subscribes
to attributes

ObjectClass handle The object class whose subscription is being reported

AttributeList handle/active Comma-separated list of attribute/subscription type pairs.
Each pair consists of a designator of an ObjectClass attribute
that the federate is subscribing to and whether the federate is
actively subscribing. The attribute is separated from the
subscription type by a slash (/) (null string if no subscriptions).

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

211

11.2.3.4 Interaction subclass ReportInteractionSubscription

The interaction subclass ReportInteractionSubscription shall be sent by the RTI in response to an
interaction of class Manager.Federate.Request.RequestSubscriptions. It shall report the interaction classes
subscribed to by the federate.

Table 23—Interaction subclass ReportInteractionSubscription

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

InteractionClassList handle/active Comma-separated list of interaction class/subscription type
pairs. Each pair consists of the designator of an interaction
class that the federate is subscribed to and whether the
federate is actively subscbing. The class is separated from the
subscription type by a slash (/) (null string if no subscriptions)

11.2.3.5 Interaction subclass ReportObjectsOwned

The interaction subclass ReportObjectsOwned shall be sent by the RTI in response to an interaction of
class Manager.Federate.Request.RequestObjectsOwned. It shall report the number of object instances (by
class) whose PrivilegeToDelete attribute shall be owned by the federate.

Table 24—Interaction subclass ReportObjectsOwned

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectCounts handle/
count, …

A comma-separated list of object instance counts. Each object
instance count consists of an object class designator and the
number of object instances of that class. The designator is
separated from the number by a slash (/) (null string if no
object instances exist).

11.2.3.6 Interaction subclass ReportObjectsUpdated

The interaction subclass ReportObjectsUpdated shall be sent by the RTI in response to an interaction of
class Manager.Federate.Request.RequestObjectsUpdated. It shall report the number of object instances
(by class) for which the federate shall be responsible for updating at least one instance attribute; where the
federate shall publish the instance attribute, own the attribute of the object instance, and be notified by the
RTI that the federate should update the values of the instance attribute.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

212

Table 25—Interaction subclass ReportObjectsUpdated

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectCounts handle/
count, …

Comma-separated list of object instance counts. Each object
instance count consists of an object class designator and the
number of object instances of that class. The designator is
separated from the number by a slash (/) (null string if no
object instances).

11.2.3.7 Interaction subclass ReportObjectsReflected

The interaction subclass ReportObjectsReflected shall be sent by the RTI in response to an interaction of
class Manager.Federate.Request.RequestObjectsReflected. It shall report the number of object instances
(by class) for which the federate shall reflect updates of at least one attribute.

Table 26—Interaction subclass ReportObjectsReflected

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectCounts handle/
count, …

Comma-separated list of object counts. Each object instance
count consists of an object class designator and the number of
object instances of that class. The designator is separated from
the number by a slash (/) (null string if no object instances).

11.2.3.8 Interaction subclass ReportUpdatesSent

The interaction subclass ReportUpdatesSent shall be sent by the RTI in response to an interaction of class
Manager.Federate.Request.RequestUpdatesSent. It shall report the number of updates sent (by object
class) by the federate since the beginning of the federation execution. One interaction of this class shall be
sent by the RTI for each transportation type used.

Table 27—Interaction subclass ReportUpdatesSent

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

TransportationType enumerated Transportation type used in sending updates; valid values are
— Reliable
— Best effort

UpdateCounts handle/
count, …

Comma-separated list of update counts. Each update count
consists of an object class designator and the number of
updates sent of that class. The designator is separated from the
number by a slash (/) (null string if no updates).

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

213

11.2.3.9 Interaction subclass ReportReflectionsReceived

The interaction subclass ReportReflectionsReceived shall be sent by the RTI in response to an interaction
of class Manager.Federate.Request.RequestReflectionsReceived. It shall report the number of reflections
received (by object class) by the federate since the beginning of the federation execution. One interaction
of this class shall be sent by the RTI for each transportation type used.

Table 28—Interaction subclass ReportReflectionsReceived

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

TransportationType enumerated Transportation type used in receiving reflections; valid values
are

— Reliable
— Best effort

ReflectCounts handle/
count, …

Comma-separated list of reflection counts. Each reflection
count consists of an object class designator and the number of
reflections received of that class. The designator is separated
from the number by a slash (/) (null string if no reflections).

11.2.3.10 Interaction subclass ReportInteractionsSent

The interaction subclass ReportInteractionsSent shall be sent by the RTI in response to an interaction of
class Manager.Federate.Request.RequestInteractionsSent. It shall report the number of interactions sent
(by interaction class) by the federate since the beginning of the federation execution. One interaction of
this class shall be sent by the RTI for each transportation type used.

Table 29—Interaction subclass ReportInteractionsSent

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

TransportationType enumerated Transportation type used in sending interactions; valid values
are
— Reliable
— Best effort

InteractionCounts count list Comma-separated list of interaction counts. Each interaction
count consists of an interaction class handle and the number
of interactions of that class. The handle is separated from the
number by a slash (/) (null string if no interactions).

11.2.3.11 Interaction subclass ReportInteractionsReceived

The interaction subclass ReportInteractionsReceived shall be sent by the RTI in response to an interaction
of class Manager.Federate.Request.RequestInteractionsReceived. It shall report the number of
interactions received (by interaction class) by the federate since the beginning of the federation execution.
One interaction of this class shall be sent by the RTI for each transportation type used.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

214

Table 30—Interaction subclass ReportInteractionsReceived

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

TransportationType enumerated Transportation type used in receiving interactions; valid
values are
— Reliable
— Best effort

InteractionCounts count list Comma-separated list of interaction counts. Each interaction
count consists of an interaction class handle and the number
of interactions of that class. The handle is separated from the
number by a slash (/) (null string if no interactions).

11.2.3.12 Interaction subclass ReportObjectInformation

The interaction subclass ReportObjectInformation shall be sent by the RTI in response to an interaction of
class Manager.Federate.Request.RequestObjectInformation. It shall report on a single object instance and
portray the attributes of that object instance that shall be owned by the federate, the registered class of the
object instance, and the known class of the object instance.

Table 31—Interaction subclass ReportObjectInformation

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectInstance string Name of the object instance for which the interaction was sent

OwnedAttributeList handle list Comma-separated list of the handles of all instance attributes
owned for the object instance by the federate (null string if
none).

RegisteredClass handle Designator of the registered class of the object instance

KnownClass handle Designator of the known class of the object instance
(registered if owned registered by the federate, discovered if
discovered by the federate)

11.2.3.13 Interaction subclass Alert

The interaction subclass Alert shall be sent by the RTI when an exception occurs.

Table 32—Interaction subclass Alert

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

215

Parameter Type Description

AlertSeverity enumerated Severity of alert raised by the RTI; valid values are
— RTI exception
— RTI internal error
— RTI federate error
— RTI warning
— RTI diagnostic

AlertDescription string Textual description of the alert

AlertID long Numerical identifier of the alert

11.2.3.14 Interaction subclass ReportServiceInvocation

The interaction subclass ReportServiceInvocation shall be sent by the RTI whenever an RTI service is
invoked, either by a federate or by the RTI. By default, the RTI shall not send these interactions.
Generation may be controlled (turned on or off) by interactions of class Manager.Federate.Adjust-
.SetServiceReporting. The interaction shall always contain the arguments supplied by the service invoker.
If the service invocation was successful, the interaction also shall contain the value returned to the invoker
(if the service returns a value); otherwise, the interaction also shall contain an indication of the exception
that shall be raised to the invoker.

Table 33—Interaction subclass ReportServiceInvocation

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

Service string Textual name of the service

Initiator enumerated Initiator of the RTI service; valid values are
— Federate
— RTI

SuccessIndicator boolean Whether the service invocation was successful. Exception
values are returned along with a false value.

SuppliedArgument1 string Textual depiction of the first argument supplied in the service
invocation

SuppliedArgument2 string Textual depiction of the second argument supplied in the
service invocation

SuppliedArgument3 string Textual depiction of the third argument supplied in the service
invocation

SuppliedArgument4 string Textual depiction of the fourth argument supplied in the
service invocation

SuppliedArgument5 string Textual depiction of the fifth argument supplied in the service
invocation

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

216

Parameter Type Description

ReturnedArgument string Textual depiction of the argument returned by the service
invocation (null if the service does not normally return a value
or if SuccessIndicator is false)

ExceptDescription string Textual description of the exception raised by this service
invocation. (null if SuccessIndicator is true.)

ExceptID long Numerical identifier of the exception raised by this service
invocation (null if SuccessIndicator is true)

11.2.4 Interaction class Manager.Federate.Service

The interaction class Manager.Federate.Service shall be acted upon by the RTI. These services shall
invoke RTI services on behalf of another federate. For services that shall be normally invoked by a
federate, they shall cause the RTI to react as if the service has invoked the federate. For services that are
normally callbacks from the RTI to a federate, they shall cause the RTI to invoke the callback.

If exceptions arise as a result of the use of these interactions, they shall be reported via the
Manager.Federate.Report.Alert interaction to all federates that subscribe to this interaction.

NOTE—These interactions shall have the potential to disrupt normal federation execution and should be used with
great care.

Interactions that shall be subclasses of this interaction class are
— ResignFederationExecution
— AnnounceSynchronizationPoint
— SynchronizationPointAchieved
— InitiateFederateSave
— FederateSaveBegun
— FederateSaveComplete
— InitiateFederateRestore
— FederateRestoreComplete
— PublishObjectClass
— UnpublishObjectClass
— PublishInteractionClass
— UnpublishInteractionClass
— SubscribeObjectClassAttributes
— UnsubscribeObjectClass
— SubscribeInteractionClass
— UnsubscribeInteractionClass
— DeleteObjectInstance
— LocalDeleteObjectInstance
— ChangeAttributeTransportationType
— ChangeAttributeOrderType
— ChangeInteractionTransportationType
— ChangeInteractionOrderType
— UnconditionalAttributeOwnershipDivestiture
— EnableTimeRegulation
— DisableTimeRegulation
— EnableTimeConstrained

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

217

— DisableTimeConstrained
— EnableAsynchronousDelivery
— DisableAsynchronousDelivery
— ModifyLookahead
— TimeAdvanceRequest
— TimeAdvanceRequestAvailable
— NextEventRequest
— NextEventRequestAvailable
— FlushQueueRequest

11.2.4.1 Interaction subclass ResignFederationExecution

The interaction subclass ResignFederationExecution shall cause the federate to resign from the federation
execution.

Table 34—Interaction subclass ResignFederationExecution

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ResignAction enumerated Action that the RTI is to take in conjunction with the
resignation; valid values are
— Release ownership of all owned instance attributes
— Delete all object instances for which the federate has

the delete privilege
— Perform the first action above, then the second
— Perform no actions

11.2.4.2 Interaction subclass AnnounceSynchronizationPoint

The interaction subclass AnnounceSynchronizationPoint shall cause the federate take action based on the
supplied tag.

Table 35—Interaction subclass InitiatePause

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

Label string Unique label associated with the synchronization point

Tag string Tag specifying the action to be performed by the federate at
the synchronizaton point

11.2.4.3 Interaction subclass SynchronizationPointAchieved

The interaction subclass SynchronizationPointAchieved shall mimic the federate’s report of achieving a
synchronization point.

Table 36—Interaction subclass PauseAchieved

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

218

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

Label string Label associated with the synchronization point

11.2.4.4 Interaction subclass InitiateFederateSave

The interaction subclass InitiateFederateSave shall cause the federate to initiate a save.

Table 37—Interaction subclass InitiateFederateSave

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

Label string Label associated with the save

11.2.4.5 Interaction subclass FederateSaveBegun

The interaction subclass FederateSaveBegun shall mimic the federate’s report of starting a save.

Table 38—Interaction subclass FederateSaveBegun

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.4.6 Interaction subclass FederateSaveComplete

The interaction subclass FederateSaveComplete shall mimic the federate’s report of completion of a save.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

219

Table 39—Interaction subclass FederateSaveComplete

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

SuccessIndicator boolean Whether the save was successful

11.2.4.7 Interaction subclass InitiateFederateRestore

The interaction subclass InitiateFederateRestore shall cause the federate to initiate a restore.

Table 40—Interaction subclass InitiateFederateRestore

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

Label string Label associated with the restore

NewFederate string Federate desigator to be used for the restore

11.2.4.8 Interaction subclass FederateRestoreComplete

The interaction subclass FederateRestoreComplete shall mimic the federate’s report of completion of a
restore.

Table 41—Interaction subclass FederateRestoreComplete

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

Label string Label associated with the restore

SuccessIndicator boolean Whether the restore was successful

11.2.4.9 Interaction subclass PublishObjectClass

The interaction subclass PublishObjectClass shall set the federate’s publication status of attributes
belonging to an object class.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

220

Table 42—Interaction subclass PublishObjectClass

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectClass handle Object class for which the federate’s publication is set

AttributeList handle list Comma-separated list of handles of attributes of ObjectClass,
which the federate shall now publish (null string if none)

NOTE—A null string implies that the federate shall now publish no
attributes.

11.2.4.10 Interaction subclass UnpublishObjectClass

The interaction subclass UnpublishObjectClass shall cause the federate no longer to publish attributes of
an object class.

Table 43—Interaction subclass UnpublishObjectClass

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectClass handle Object class that the federate shall no longer publish

11.2.4.11 Interaction subclass PublishInteractionClass

The interaction subclass PublishInteractionClass shall set the federate’s publication status of an
interaction class.

Table 44—Interaction subclass PublishInteractionClass

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

InteractionClass handle Interaction class that the federate shall publish

11.2.4.12 Interaction subclass UnpublishInteractionClass

The interaction subclass UnpublishInteractionClass shall cause the federate no longer to publish an
interaction class.

Table 45—Interaction subclass UnpublishInteractionClass

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

221

Parameter Type Description

InteractionClass handle Interaction class that the federate shall no longer publish

11.2.4.13 Interaction subclass SubscribeObjectClassAttributes

The interaction subclass SubscribeObjectClassAttributes shall set the federate’s subscription status of
attributes belonging to an object class.

Table 46—Interaction subclass SubscribeObjectClassAttributes

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectClass handle Object class for which the federate’s subscription shall change

AttributeList handle list Comma-separated list of handles of attributes of ObjectClass
to which the federate shall now subscribe (null string if none)

NOTE—A null string implies that the federate shall now
subscribe to no attributes.

Active boolean Whether the subscription is active

11.2.4.14 Interaction subclass UnsubscribeObjectClass

The interaction subclass UnsubscribeObjectClass shall cause the federate no longer to subscribe to
attributes of an object class.

Table 47—Interaction subclass UnsubscribeObjectClass

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectClass handle Object class to which the federate shall no longer be
subscribed

11.2.4.15 Interaction subclass SubscribeInteractionClass

The interaction subclass SubscribeInteractionClass shall set the federate’s subscription status to an
interaction class.

Table 48—Interaction subclass SubscribeInteractionClass

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

InteractionClass handle Interaction class to which the federate shall subscribe

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

222

Parameter Type Description

Active boolean Whether the subscription is active

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

223

11.2.4.16 Interaction subclass UnsubscribeInteractionClass

The interaction subclass UnsubscribeInteractionClass shall cause the federate no longer to subscribe to an
interaction class.

Table 49—Interaction subclass UnsubscribeInteractionClass

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

InteractionClass handle Interaction class to which the federate will no longer subscribe

11.2.4.17 Interaction subclass DeleteObjectInstance

The interaction subclass DeleteObjectInstance shall cause an object instance to be deleted from the
federation.

Table 50—Interaction subclass DeleteObjectInstance

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectInstance string Name of the object instance that is to be deleted

Tag string Tag associated with the deletion

FederationTime time Federation time of the deletion (optional)

11.2.4.18 Interaction subclass LocalDeleteObjectInstance

The interaction subclass LocalDeleteObjectInstance shall inform the RTI that it shall treat the specified
object instance as if the RTI had never notified the affected federate to discover the object instance.

Table 51—Interaction subclass LocalDeleteObjectInstance

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectInstance string Name of the object instance that is to be deleted

11.2.4.19 Interaction subclass ChangeAttributeTransportationType

The interaction subclass ChangeAttributeTransportationType shall change the transportation type used by
the federate when sending attributes belonging to a single object instance.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

224

Table 52—Interaction subclass ChangeAttributeTransportationType

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectInstance string Name of the object instance whose attribute transportation
type is to be changed

AttributeList handle list Comma-separated list of the handles of instance attributes
whose transportation type is to be changed (null string if none)

TransportationType enumerated Transportation type desired for use in updating instance
attributes in the list; valid values are
— Reliable
— Best effort

11.2.4.20 Interaction subclass ChangeAttributeOrderType

The interaction subclass ChangeAttributeOrderType shall change the ordering type used by the federate
when sending attributes belonging to a single object instance.

Table 53—Interaction subclass ChangeAttributeOrderType

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectInstance string Name of the object instance whose attribute ordering type is to
be changed

AttributeList handle list Comma-separated list of the handles of instance attributes
whose ordering type is to be changed (null string if none)

OrderingType enumerated Ordering type desired for use in sending the instance attribute
list; valid values are
— Receive
— Timestamp

11.2.4.21 Interaction subclass ChangeInteractionTransportationType

The interaction subclass ChangeInteractionTransportationType shall change the transportation type used
by the federate when sending a class of interaction.

Table 54—Interaction subclass ChangeInteractionTransportationType

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

InteractionClass handle Interaction class whose transportation type is changed by this
service invocation

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

225

Parameter Type Description

TransportationType enumerated Transportation type desired for use in sending the interaction
class; valid values are
— Reliable
— Best effort

11.2.4.22 Interaction subclass ChangeInteractionOrderType

The interaction subclass ChangeInteractionOrderType shall change the ordering type used by the federate
when sending a class of interaction.

Table 55—Interaction subclass ChangeInteractionOrderType

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

InteractionClass handle Interaction class whose ordering type is changed by this
service invocation

OrderingType enumerated Ordering type desired for use in sending the interaction class;
valid values are
— Receive
— Timestamp

11.2.4.23 Interaction subclass UnconditionalAttributeOwnershipDivestiture

The interaction subclass UnconditionalAttributeOwnershipDivestiture shall cause the ownership of
attributes contained in an object instance to be unconditionally divested by the federate.

Table 56—Interaction subclass UnconditionalAttributeOwnershipDivestiture

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

ObjectInstance string Name of the object instance whose attributes’ ownership is to
be divested

AttributeList handle list Comma-separated list of handles of instance attributes
belonging to ObjectInstance whose ownership is to be divested
by the federate (null string if none)

11.2.4.24 Interaction subclass EnableTimeRegulation

The interaction subclass EnableTimeRegulation shall cause the federate to begin regulating the logical
time of other federates.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

226

Table 57—Interaction subclass EnableTimeRegulation

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

FederationTime time Federation time at which time regulation is to begin

Lookahead time Lookahead to be used by the federate while regulating other
federates

11.2.4.25 Interaction subclass DisableTimeRegulation

The interaction subclass DisableTimeRegulation shall cause the federate to cease regulating the logical
time of other federates.

Table 58—Interaction subclass DisableTimeRegulation

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.4.26 Interaction subclass EnableTimeConstrained

The interaction subclass EnableTimeConstrained shall cause the logical time of the federate to begin
being constrained by the logical times of other federates.

Table 59—Interaction subclass EnableTimeConstrained

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.4.27 Interaction subclass DisableTimeConstrained

The interaction subclass DisableTimeConstrained shall cause the logical time of the federate to cease
being constrained by the logical times of other federates.

Table 60—Interaction subclass DisableTimeConstrained

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.4.28 Interaction subclass EnableAsynchronousDelivery

The interaction subclass EnableAsynchonousDelivery shall cause the RTI to deliver receive-order
messages to the federate when its time manager state is either “Time Pending” or “Idle.” The federate
shall be time-constrained for this interaction to have effect.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

227

Table 61—Interaction subclass EnableAsynchronousDelivery

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.4.29 Interaction subclass DisableAsynchronousDelivery

The interaction subclass DisableAsynchronousDelivery shall cause the RTI to deliver receive-order
messages to the federate only when its time manager state is “Time Pending.” The federate shall be time-
constrained for this interaction to have effect.

Table 62—Interaction subclass EnableAsynchronousDelivery

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

11.2.4.30 Interaction subclass ModifyLookahead

The interaction subclass ModifyLookahead shall change the lookahead value used by the federate.

Table 63—Interaction subclass ModifyLookahead

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

Lookahead time New value for lookahead

11.2.4.31 Interaction subclass TimeAdvanceRequest

The interaction subclass TimeAdvanceRequest shall request an advance of the federate's logical time on
behalf of the federate, and release zero or more messages for delivery to the federate.

Table 64—Interaction subclass TimeAdvanceRequest

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

FederationTime time Federation time requested

11.2.4.32 Interaction subclass TimeAdvanceRequestAvailable

The interaction subclass TimeAdvanceRequestAvailable shall request an advance of the federate's logical
time, on behalf of the federate, and release zero or more messages for delivery to the federate.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

228

Table 65—Interaction subclass TimeAdvanceRequestAvailable

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

FederationTime time Federation time requested

11.2.4.33 Interaction subclass NextEventRequest

The interaction subclass NextEventRequest shall request the logical time of the federate to be advanced to
the time stamp of the next TSO message that shall be delivered to the federate, provided that the message
shall have a time stamp no greater than the logical time specified in the request.

Table 66—Interaction subclass NextEventRequest

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

FederationTime time Federation time requested

11.2.4.34 Interaction subclass NextEventRequestAvailable

The interaction subclass NextEventRequestAvailable shall request the logical time of the federate to be
advanced to the time stamp of the next TSO message that shall be delivered to the federate, provided that
the message shall have a time stamp no greater than the logical time specified in the request.

Table 67—Interaction subclass NextEventRequestAvailable

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

FederationTime time Federation time requested

11.2.4.35 Interaction subclass FlushQueueRequest

The interaction subclass FlushQueueRequest shall request the logical time of the federate to be advanced
to the time stamp of the next TSO message that shall be delivered to the federate, provided that the
message shall have a time stamp no greater than the logical time specified in the request. All TSO
messages shall be delivered to the federate.

Table 68—Interaction subclass FlushQueueRequest

Parameter Type Description

Federate handle Designator of the affected federate that was provided when
joining

FederationTime time Federation time requested

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

229

12. Federation execution data (FED)

12.1 FED data interchange format (FED DIF)

The high-level architecture FED data interchange format (DIF) is a standard file-exchange format that
shall be used to store and transfer HLA FED files between multiple tools including object-model
development tools (OMDTs) and RTIs.

12.1.1 BNF notation of the DIF

To ensure that there is no ambiguity in the definition of the DIF, the DIF shall be defined terms of
Backus-Naur Form (BNF). BNF is a formal notation used to describe inductive specifications. Attributed
to John Backus and Peter Naur, it was invented to describe the syntax of Algol 60 in an unambiguous
manner. Since then it has become widely accepted and used by most authors of books on new
programming languages to specify the syntax rules of the language.

Because no standard BNF notation exists, it is necessary to present the conventions for the notation used
here. This document will use extended BNF (EBNF), which includes some additional constructs to handle
iteration and alternation as described in the following sub-clauses.

12.1.1.1 BNF notation conventions

BNF has three major parts:
— Terminals, which shall require no further definition,
— Non-terminals, which shall be defined in terms of other non-terminals and terminals, and
— Productions which, for each non-terminal, shall precisely state how the non-terminal is constructed.

Certain symbols within the BNF shall have special meanings. These shall be called meta-symbols, and
they shall be used to structure the BNF. Double quotes, angle brackets, braces, etc., shall be meta-symbols
within BNF, and their definition and use will be given below.
— Words inside double quotes (“word”) shall represent literal words themselves (these shall be called

terminals).
— Words contained within angle brackets ‘< >’ shall represent semantic categories (i.e. non-

terminals) that shall be resolved by reading their definition elsewhere in the BNF. An example of a
non-terminal is <NameCharacter>.

— A production (sometimes called a rule) shall be a statement of the definition of a non-terminal. It
shall be designated by the production meta-symbol ‘::=’, which shall assign the definition to the
right-hand side (RHS) of the production to the non-terminal on the left hand side (LHS) of the
production symbol. The LHS shall always consist of a single non-terminal, while the RHS may
consist of any combination of terminals and non-terminals. The symbol ‘::=’ shall be read as “…is
defined to be…” or “…is composed of…”. An example of a production is:

<<SpaceName>> ::= <NameString>;

— Selection of one item for a given instance shall be designated by use of the vertical bar symbol ‘|’.
The symbol ‘|’ shall be read as “…or…”.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

230

— Each BNF statement shall be terminated by a semicolon (;).

12.1.1.2 EBNF notation conventions
— Terminals shall be represented using words inside double quotes. In addition, terminals shall be

further highlighted using boldfaced text. An example of a terminal is "Federation".
— The BNF used in this standard shall add a special case of non-terminal that shall be denoted by

double brackets ‘<< >>’ rather than single angle brackets. This special case non-terminal shall be a
reference to the FED DIF glossary found in clause 12.1.4.

— Optional Items shall be enclosed by square bracket meta-symbols ‘[‘ and ‘]’. Square brackets shall
indicate that the item exists either zero or one time; that is, it may or may not exist. An example of
an optional item is [<SpaceName>], which indicates that the SpaceName item may or may not be
present in the DIF.

— Repetition (zero, one, or many) shall be performed by the curly brace meta-symbols ‘{‘ and ‘}’.
 Curly braces followed by a * character shall indicate that there are zero or more sequential

instances of the item.
 Curly braces followed by a + character shall indicate that there shall be one or more sequential

instances of the item.
— The double period .. used within a literal shall be a shortcut notation for denoting the set of ASCII

characters between the characters to either side of them. An example of this is “a..z”, which
denotes the set of lowercase letters between ‘a’ and ‘z’ inclusive.

12.1.1.3 Basic BNF constructs

The following are a set of basic BNF constructs referenced in the main body of the DIF BNF definition.
They are defined separately to make the main body more readable.

<NameString> ::= <Letter> {<NameCharacter>}*;

<NameCharacter> ::= <Letter> | <DecimalDigit> | "_" | "+" | "-" | "*" | "/" |

 "@" | "$" | "%" | "^" | "&" | "=" | "<" | ">" | "~" | "!" | "#";

<Letter> ::= "a..z" | "A..Z";

<DecimalDigit> ::= "0..9";

Figure 16—Basic BNF constructs

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

231

12.1.2 HLA FED DIF BNF definition

<HLA-FED-DIF-v1.3> ::= “(FED ” <Federation> <FEDversion> <Spaces> <ObjectClasses>

 <InteractionClasses> “)”;

<Federation> ::= “(Federation ” <<FEDname>> “)”;

<FEDversion> ::= “(FEDversion ” <<FEDDIFversionNumber>> “)”;

<<FEDname>> ::= <NameString>;

<<FEDDIFversionNumber>> ::= “v1.3”;

<Spaces> ::= “(spaces ” {<Space>}* “)”;

<Space> ::= “(space ” <<SpaceName>> {<Dimension>}* “)”;

<Dimension> ::= “(dimension ” <<DimensionName>> “)”;

<<SpaceName>> ::= <NameString>;

<<DimensionName>> ::= <NameString>;

<ObjectClasses> ::= “(objects ”

 “(class ObjectRoot ”

 “(attribute privilegeToDelete ” <<Transport>> <<Order>>
[<<SpaceName>>] “)”

 “(class RTIprivate)”

 {<ObjectClass>}* “))”;

<ObjectClass> ::= “(class ” <<ObjectClassName>>

 {<Attribute>}*

 {<ObjectClass>}* “)”;

<Attribute> ::= “(attribute ” <<AttributeName>> <<Transport>> <<Order>> [<<SpaceName>>]
“)”;

<<ObjectClassName>> ::= <NameString>;

<<Transport>> ::= <NameString>;

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

232

<<Order>> ::= <NameString>;

<<AttributeName>> ::= <NameString>;

<InteractionClasses> ::= “(interactions ”

 “(class InteractionRoot ” <<Transport>> <<Order>> [<<SpaceName>>]

 “(class RTIprivate ” <<Transport>> <<Order>> [<<SpaceName>>] “)”

 {InteractionClass}* “))”;

<InteractionClass> ::= “(class ” <<InteractionClassName>> <<Transport>> <<Order>>
[<<SpaceName>>]

 {<Parameter>}*

 {<InteractionClass>}* “)”;

<Parameter> ::= “(parameter ” <<ParameterName>> “)”;

<<InteractionClassName>> ::= <NameString>;

<<ParameterName>> ::= <NameString>;

Figure 17—HLA FED DIF BNF definition

12.1.3 FED DIF meta-data consistency

The use of BNF cannot completely capture all of the rules that specify a complete and correct DIF file or
object model. A FED DIF file shall comply with the following rules to be complete, consistent, and
correct:
1. A comment shall be prefixed with two semicolons and terminated by \n (;; comment \n).
2. A comment may appear at the beginning of a line (on a line by itself).
3. A comment may appear at the end of a line following a FED element.
4. Wherever a literal space appears in the DIF definition, multiple spaces shall be valid.
5. One or more literal spaces shall be allowed between any parenthesis and the adjoining text.
6. Use of routing spaces shall optional.
7. Routing space names within a FED file shall be unique.
8. Dimension names within a single routing space shall be unique.
9. All names shall be case insensitive.
10. Object- and interaction-class names shall be unique where they share a common parent class. Class

names may be reused across multiple branches or tiers of the class hierarchy, as long as no two
sibling classes have the same name.

11. All MOM object and interaction classes along with their attributes and parameters shall be included
in each FED DIF file.

12. All terminals in the BNF description and DIF files produced in accordance with this BNF
description shall be considered to be case insensitive. For example, the literal “ObjectModel” and
“OBJECTMODEL” shall be considered equivalent. Capitalization shall be used in the BNF strictly
to enhance readability.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

233

12.1.4 FED DIF glossary

This glossary shall define the terms used in the HLA FED DIF BNF definition to the corresponding
concepts in the main body of the interface specification.

AttributeName The name of an object-class attribute.

DimensionName The name of a routing-space dimension.

FEDDIFversionNumber The identifier for a specific version of the FED DIF.

FEDname The name of an HLA federation.

InteractionClassName The name of an interaction class.

ObjectClassName The name of an object class.

Order The name of a type of message ordering.

ParameterName The name of an interaction-class parameter.

SpaceName The name of a routing space.

Transport The name of a type of message transportation.

12.2 Example FED file

Figure 18 depicts a complete FED file with particular emphasis on the MOM (MOM definitions are
complete). Several liberties have been taken with the depiction:
— Aspects of the file that should be completed for a specific federation execution are in italics. This

includes definition of space characteristics, specification of transportation and order type, and
optionally space characteristic for each class attribute and interaction class. It also includes
definition of extensions to the MOM object and interaction classes and specification of federation
object and interaction classes.

— The x characters have been added to aid the user in associating subclasses with classes and
attributes with classes.

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

234

Figure 18—FED file with MOM definitions

 (FED

 (Federation MOM)

 (FEDversion v1.3)

(spaces

 Space definitions

)

 (objects

 x (class objectRoot

 x x (attribute privilegeToDelete transport order space)

 x x (class RTIprivate)

 x x (class Manager

 x x x (class Federate

 x x x (attribute Federate transport order space)

 x x x (attribute FederateType transport order space)

 x x x (attribute FederateName transport order space)

 x x x (attribute FederateHost transport order space)

 x x x (attribute RTIversion transport order space)

 x x x (attribute FEDid transport order space)

 x x x (attribute TimeConstrained transport order space)

 x x x (attribute TimeRegulating transport order space)

 x x x (attribute AsynchronousDelivery transport order space)

 x x x (attribute FederateState transport order space)

 x x x (attribute TimeManagerState transport order space)

 x x x (attribute FederateTime transport order space)

 x x x (attribute Lookahead transport order space)

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

235

 x x x (attribute LBTS transport order space)

 x x x (attribute MinNextEventTime transport order space)

 x x x (attribute ROlength transport order space)

 x x x (attribute TSOlength transport order space)

 x x x (attribute ReflectionsReceived transport order space)

 x x x (attribute UpdatesSent transport order space)

 x x x (attribute InteractionsReceived transport order space)

 x x x (attribute InteractionsSent transport order space)

 x x x (attribute ObjectsOwned transport order space)

 x x x (attribute ObjectsUpdated transport order space)

 x x x (attribute ObjectsReflected transport order space))

 x x x (class Federation

 x x x (attribute FederationName transport order space)

 x x x (attribute FederatesInFederation transport order space)

 x x x (attribute RTIversion transport order space)

 x x x (attribute LastSaveName transport order space)

 x x x (attribute LastSaveTime transport order space)

 x x x (attribute NextSaveName transport order space)

 x x x (attribute NextSaveTime transport order space))

 x x x (MOM Object Class extension definitions)

 x x)

 x x (User Object Class definitions)

 x)

)

 (interactions

 x (class interactionRoot transport order space

 x x (class RTIprivate transport order space)

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

236

 x x (class Manager transport order space

 x x x (class Federate transport order space

 x x x x (parameter Federate)

 x x x x (class Request transport order space

 x x x x x (class RequestPublications transport order space)

 x x x x x (class RequestSubscriptions transport order space)

 x x x x x (class RequestObjectsOwned transport order space)

 x x x x x (class RequestObjectsUpdated transport order space)

 x x x x x (class RequestObjectsReflected transport order space)

 x x x x x (class RequestUpdatesSent transport order space)

 x x x x x (class RequestInteractionsSent transport order space)

 x x x x x (class RequestReflectionsReceived transport order space)

 x x x x x (class RequestInteractionsReceived transport order space)

 x x x x x (class RequestObjectInformation transport order space

 x x x x x (parameter ObjectInstance))

 x x x x)

 x x x x (class Report transport order space

 x x x x x (class ReportObjectPublication transport order space

 x x x x x (parameter NumberOfClasses)

 x x x x x (parameter ObjectClass)

 x x x x x (parameter AttributeList))

 x x x x x (class ReportInteractionPublication transport order space

 x x x x x (parameter InteractionClassList))

 x x x x x (class ReportObjectSubscription transport order space

 x x x x x (parameter NumberOfClasses)

 x x x x x (parameter ObjectClass)

 x x x x x (parameter AttributeList))

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

237

 x x x x x (class ReportInteractionSubscription transport order space

 x x x x x (parameter InteractionClassList))

 x x x x x (class ReportObjectsOwned transport order space

 x x x x x (parameter ObjectCounts))

 x x x x x (class ReportObjectsUpdated transport order space

 x x x x x (parameter ObjectCounts))

 x x x x x (class ReportObjectsReflected transport order space

 x x x x x (parameter ObjectCounts))

 x x x x x (class ReportUpdatesSent transport order space

 x x x x x (parameter TransportType)

 x x x x x (parameter UpdateCounts))

 x x x x x (class ReportReflectionsReceived transport order space

 x x x x x (parameter TransportType)

 x x x x x (parameter ReflectCounts))

 x x x x x (class ReportInteractionsSent transport order space

 x x x x x (parameter TransportType)

 x x x x x (parameter InteractionCounts))

 x x x x x (class ReportInteractionsReceived transport order space

 x x x x x (parameter TransportType)

 x x x x x (parameter InteractionCounts))

 x x x x x (class ReportObjectInformation transport order space

 x x x x x (parameter ObjectInstance)

 x x x x x (parameter OwnedAttributeList)

 x x x x x (parameter RegisteredClass)

 x x x x x (parameter KnownClass))

 x x x x x (class Alert transport order space

 x x x x x (parameter AlertSeverity)

 x x x x x (parameter AlertDescription)

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

238

 x x x x x (parameter AlertID))

 x x x x x (class ReportServiceInvocation transport order space

 x x x x x (parameter Service)

 x x x x x (parameter Initiator)

 x x x x x (parameter SuccessIndicator)

 x x x x x (parameter SuppliedArgument1)

 x x x x x (parameter SuppliedArgument2)

 x x x x x (parameter SuppliedArgument3)

 x x x x x (parameter SuppliedArgument4)

 x x x x x (parameter SuppliedArgument5)

 x x x x x (parameter ReturnedArgument)

 x x x x x (parameter ExceptDescription)

 x x x x x (parameter ExceptID))

 x x x x)

 x x x x (class Adjust transport order space

 x x x x x (class SetTiming transport order space

 x x x x x (parameter ReportPeriod))

 x x x x x (class ModifyAttributeState transport order space

 x x x x x (parameter ObjectInstance)

 x x x x x (parameter Attribute)

 x x x x x (parameter AttributeState))

 x x x x x (class SetServiceReporting transport order space

 x x x x x (parameter ReportingState))

 x x x x x (class SetExceptionLogging transport order space

 x x x x x (parameter LoggingState))

 x x x x)

 x x x x (class Service transport order space

 x x x x x (class ResignFederationExecution transport order space

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

239

 x x x x x (parameter ResignAction))

 x x x x x (class AnnounceSynchronizationPoint transport order space

 x x x x x (parameter Label)

 x x x x x (parameter Tag))

 x x x x x (class SynchronizationPointAchieved transport order space

 x x x x x (parameter Label))

 x x x x x (class InitiateFederateSave transport order space

 x x x x x (parameter Label))

 x x x x x (class FederateSaveBegun transport order space)

 x x x x x (class FederateSaveComplete transport order space

 x x x x x (parameter SuccessIndicator))

 x x x x x (class InitiateFederateRestore transport order space

 x x x x x (parameter Label))

 x x x x x (class FederateRestoreComplete transport order space

 x x x x x (parameter SuccessIndicator))

 x x x x x (class PublishObjectClass transport order space

 x x x x x (parameter ObjectClass)

 x x x x x (parameter AttributeList))

 x x x x x (class UnpublishObjectClass transport order space

 x x x x x (parameter ObjectClass))

 x x x x x (class PublishInteractionClass transport order space

 x x x x x (parameter InteractionClass))

 x x x x x (class UnpublishInteractionClass transport order space

 x x x x x (parameter InteractionClass))

 x x x x x (class SubscribeObjectClassAttributes transport order space

 x x x x x (parameter ObjectClass)

 x x x x x (parameter AttributeList)

 x x x x x (parameter Active))

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

240

 x x x x x (class UnsubscribeObjectClass transport order space

 x x x x x (parameter ObjectClass))

 x x x x x (class SubscribeInteractionClass transport order space

 x x x x x (parameter InteractionClass)

 x x x x x (parameter Active))

 x x x x x (class UnsubscribeInteractionClass transport order space

 x x x x x (parameter InteractionClass))

 x x x x x (class DeleteObjectInstance transport order space

 x x x x x (parameter ObjectInstance)

 x x x x x (parameter Tag)

 x x x x x (parameter FederationTime))

 x x x x x (class LocalDeleteObjectInstance transport order space

 x x x x x (parameter ObjectInstance))

 x x x x x (class ChangeAttributeTransportationType transport order space

 x x x x x (parameter ObjectInstance)

 x x x x x (parameter AttributeList)

 x x x x x (parameter TransportationType))

 x x x x x (class ChangeAttributeOrderType transport order space

 x x x x x (parameter ObjectInstance)

 x x x x x (parameter AttributeList)

 x x x x x (parameter OrderingType))

 x x x x x (class ChangeInteractionTransportationType transport order space

 x x x x x (parameter InteractionClass)

 x x x x x (parameter TransportationType))

 x x x x x (class ChangeInteractionOrderType transport order space

 x x x x x (parameter InteractionClass)

 x x x x x (parameter OrderingType))

 x x x x x (class UnconditionalAttributeOwnershipDivestiture transport order space

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

241

 x x x x x (parameter ObjectInstance)

 x x x x x (parameter AttributeList))

 x x x x x (class EnableTimeRegulation transport order space

 x x x x x (parameter FederationTime)

 x x x x x (parameter Lookahead))

 x x x x x (class DisableTimeRegulation transport order space)

 x x x x x (class EnableTimeConstrained transport order space)

 x x x x x (class DisableTimeConstrained transport order space)

 x x x x x (class EnableAsynchronousDelivery transport order space)

 x x x x x (class DisableAsynchronousDelivery transport order space)

 x x x x x (class ModifyLookahead transport order space

 x x x x x (parameter Lookahead))

 x x x x x (class TimeAdvanceRequest transport order space

 x x x x x (parameter FederationTime))

 x x x x x (class TimeAdvanceRequestAvailable transport order space

 x x x x x (parameter FederationTime))

 x x x x x (class NextEventRequest transport order space

 x x x x x (parameter FederationTime))

 x x x x x (class NextEventRequestAvailable transport order space

 x x x x x (parameter FederationTime))

 x x x x x (class FlushQueueRequest transport order space

 x x x x x (parameter FederationTime))

 x x x x)

 x x x)

 x x x (MOM Interaction Class extension definitions)

 x x)

 x x (User Interaction Class definitions)

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

242

 x)

)

)

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

243

ANNEX A (normative)
IDL application programmer’s interface
TBS

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

245

ANNEX B (normative)
C++ application programmer’s interface

//File RTI.hh

#ifndef RTI_hh
#define RTI_hh

#include <fstream.h>
#include <math.h>
#include <rw/rwfile.h>

struct RTIambPrivateRefs;
struct RTIambPrivateData;

class RTI {
public:

#include "baseTypes.hh"
#include "RTItypes.hh"

 class RTIambassador {
 public:
#include "RTIambServices.hh"
 RTIambPrivateData* privateData;
 private:
 RTIambPrivateRefs* privateRefs;
 };

 class FederateAmbassador {
 public:
#include "federateAmbServices.hh"
 };
};

#endif

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

246

//File baseTypes.hh
//Included in RTI.hh

#ifndef NULL
#define NULL (0)
#endif

typedef unsigned short UShort;
typedef short Short;
typedef unsigned long ULong;
typedef long Long;
typedef double Double;
typedef float Float;

enum Boolean {
 RTI_FALSE = 0,
 RTI_TRUE};

class Exception {
public:
 RTI::ULong _serial;
 char *_reason;
 const char *_name;
 Exception (const char *reason);
 Exception (RTI::ULong serial, const char *reason=NULL);
 Exception (const Exception &toCopy);
 virtual ~Exception ();
 Exception & operator = (const Exception &);
 friend ostream& operator<< (ostream &, Exception *);
};

#define RTI_EXCEPT(A) \
class A : public RTI::Exception { \
public: \
 static const char *_ex; \
 A (const char *reason) : Exception (reason) { _name = _ex; } \
 A (RTI::ULong serial, const char *reason=NULL) \
 : Exception (serial, reason) { _name = _ex; } \
 A (const RTI::Exception &toCopy) : Exception(toCopy) { _name = _ex; } \
};

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

247

// File RTItypesypes.hh
// Included in RTI.hh

// RTI Parameter Passing Memory Conventions
//
// C1 In parameter by value.
// C2 Out parameter by pointer value.
// C3 Function return by value.
// C4 In parameter by const pointer value. Caller provides memory.
// Caller may free memory or overwrite it upon completion of
// the call. Callee must copy during the call anything it
// wishes to save beyond completion of the call. Parameter
// type must define const accessor methods.
// C5 Out parameter by pointer value. Caller provides reference to object.
// Callee constructs an instance on the heap (new) and returns.
// The caller destroys the instance (delete) at its leisure.
// C6 Function return by pointer value. Callee constructs an instance on
// the heap (new) and returns a reference. The caller destroys the
// instance (delete) at its leisure.

#define MAX_FEDERATION 32
#define MAX_FEDERATE 32
#define MAX_NAME_LENGTH 64
#define MAX_SPACES 10
#define MAX_OBJECT_CLASSES 200
#define MAX_INTERACTION_CLASSES 200
#define MAX_ATTRIBUTES_PER_CLASS 200
#define MAX_PARAMETERS_PER_CLASS 200
#define MAX_DIMENSIONS_PER_SPACE 10
#define DEFAULT_SPACE_NAME "defaultSpace"
#define MAX_USER_TAG_LENGTH 30
#define RTI_VERSION "1.1R3"
#define MAX_EXTENT ((RTI::ULong) 0xc0000000)
#define MIN_EXTENT ((RTI::ULong) 0x40000000)
#define POSITIVE_INFINITY (HUGE_VAL) //see <math.h>

RTI_EXCEPT(ArrayIndexOutOfBounds)
RTI_EXCEPT(AttributeAcquisitionWasNotRequested)
RTI_EXCEPT(AttributeAcquisitionWasNotCanceled)
RTI_EXCEPT(AttributeAlreadyBeingAcquired)
RTI_EXCEPT(AttributeAlreadyBeingDivested)
RTI_EXCEPT(AttributeAlreadyOwned)
RTI_EXCEPT(AttributeDivestitureWasNotRequested)
RTI_EXCEPT(AttributeNotDefined)
RTI_EXCEPT(AttributeNotKnown)
RTI_EXCEPT(AttributeNotOwned)
RTI_EXCEPT(AttributeNotPublished)
RTI_EXCEPT(AttributeNotSubscribed)
RTI_EXCEPT(ConcurrentAccessAttempted)
RTI_EXCEPT(CouldNotDiscover)
RTI_EXCEPT(CouldNotOpenFED)
RTI_EXCEPT(CouldNotRestore)
RTI_EXCEPT(DeletePrivilegeNotHeld)
RTI_EXCEPT(DimensionNotDefined)
RTI_EXCEPT(EnableTimeConstrainedPending)
RTI_EXCEPT(EnableTimeConstrainedWasNotPending)
RTI_EXCEPT(EnableTimeRegulationPending)

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

248

RTI_EXCEPT(EnableTimeRegulationWasNotPending)
RTI_EXCEPT(ErrorReadingFED)
RTI_EXCEPT(EventNotKnown)
RTI_EXCEPT(FederateAlreadyExecutionMember)
RTI_EXCEPT(FederateDoesNotExist)
RTI_EXCEPT(FederateInternalError)
RTI_EXCEPT(FederateLoggingServiceCalls)
RTI_EXCEPT(FederateNotExecutionMember)
RTI_EXCEPT(FederateOwnsAttributes)
RTI_EXCEPT(FederateWasNotAskedToReleaseAttribute)
RTI_EXCEPT(FederatesCurrentlyJoined)
RTI_EXCEPT(FederationExecutionAlreadyExists)
RTI_EXCEPT(FederationExecutionDoesNotExist)
RTI_EXCEPT(FederationTimeAlreadyPassed)
RTI_EXCEPT(HandleValuePairMaximumExceeded)
RTI_EXCEPT(InteractionClassNotDefined)
RTI_EXCEPT(InteractionClassNotKnown)
RTI_EXCEPT(InteractionClassNotPublished)
RTI_EXCEPT(InteractionClassNotSubscribed)
RTI_EXCEPT(InteractionParameterNotDefined)
RTI_EXCEPT(InteractionParameterNotKnown)
RTI_EXCEPT(InvalidDivestitureCondition)
RTI_EXCEPT(InvalidExtents)
RTI_EXCEPT(InvalidFederationTime)
RTI_EXCEPT(InvalidLookahead)
RTI_EXCEPT(InvalidObjectHandle)
RTI_EXCEPT(InvalidOrderingHandle)
RTI_EXCEPT(InvalidOrderType)
RTI_EXCEPT(InvalidRegionContext)
RTI_EXCEPT(InvalidResignAction)
RTI_EXCEPT(InvalidRetractionHandle)
RTI_EXCEPT(InvalidTransportationHandle)
RTI_EXCEPT(InvalidTransportType)
RTI_EXCEPT(MemoryExhausted)
RTI_EXCEPT(NameNotFound)
RTI_EXCEPT(ObjectClassNotDefined)
RTI_EXCEPT(ObjectClassNotKnown)
RTI_EXCEPT(ObjectClassNotPublished)
RTI_EXCEPT(ObjectClassNotSubscribed)
RTI_EXCEPT(ObjectNotKnown)
RTI_EXCEPT(ObjectAlreadyRegistered)
RTI_EXCEPT(RegionNotKnown)
RTI_EXCEPT(RestoreInProgress)
RTI_EXCEPT(RestoreNotRequested)
RTI_EXCEPT(RTICannotRestore)
RTI_EXCEPT(RTIinternalError)
RTI_EXCEPT(SpaceNotDefined)
RTI_EXCEPT(SaveInProgress)
RTI_EXCEPT(SaveNotInitiated)
RTI_EXCEPT(SpecifiedSaveLabelDoesNotExist)
RTI_EXCEPT(SynchronizationPointLabelWasNotAnnounced)
RTI_EXCEPT(TimeAdvanceAlreadyInProgress)
RTI_EXCEPT(TimeAdvanceWasNotInProgress)
RTI_EXCEPT(TimeConstrainedAlreadyEnabled)
RTI_EXCEPT(TimeConstrainedWasNotEnabled)
RTI_EXCEPT(TimeRegulationAlreadyEnabled)
RTI_EXCEPT(TimeRegulationWasNotEnabled)
RTI_EXCEPT(UnableToPerformSave)
RTI_EXCEPT(UnimplementedService)
RTI_EXCEPT(UnknownLabel)

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

249

RTI_EXCEPT(ValueCountExceeded)
RTI_EXCEPT(ValueLengthExceeded)

enum TokenState {
 LOCKED = 1,
 UNLOCKED,
 DIVESTING,
 GONE
};

enum ObjectState {
 KNOWN_TO_FEDERATE = 1,
 HOLDING_TOKENS,
 DELETED
};

enum ResignAction {
 RELEASE_ATTRIBUTES = 1,
 DELETE_OBJECTS,
 DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES,
 NO_ACTION
};

enum FederateStateType {
 RUNNING = 1,
 SAVE_PENDING,
 SAVING,
 RESTORE_PENDING,
 RESTORING
};

enum TimeManagerStateType {
 IDLE = 1,
 TIME_ADVANCING
};

class Region;

class FederateAmbassador;

typedef FederateAmbassador *FederateAmbassadorPtr;

typedef RTI::Long SpaceHandle;

typedef RTI::ULong ObjectClassHandle;

typedef RTI::ULong InteractionClassHandle;

typedef RTI::ULong ExtentIndex;

typedef RTI::ULong Handle;

typedef Handle AttributeHandle;

typedef Handle ParameterHandle;

typedef Handle ObjectHandle;

typedef Handle DimensionHandle;

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

250

typedef RTI::ULong FederateHandle;

typedef Handle TransportationHandle;

typedef TransportationHandle TransportType;

typedef Handle OrderingHandle;
typedef OrderingHandle OrderType;

typedef RTI::ULong FederateID;

//typedef RTI::ULong ObjectID;

typedef RTI::ULong UniqueID;

//typedef RTI::UShort ObjectIDcount;

typedef RTI::Double FederationTimeDelta;

typedef RTI::Double FederationTime;

typedef RTI::Double TickTime;

// All char * declarations should use null terminated strings

typedef char * FederationExecutionName;

typedef char * FederationExecutionDataDesignator;

typedef char * FederateType;

typedef char * FEDsignature;

typedef char * FileName;

typedef char * SynchronizationLabel;

typedef char * SaveLabel;

typedef char * UserSuppliedTag;

typedef char * ObjectName;

typedef char * ObjectClassName;

typedef char * AttributeName;

typedef char * InteractionClassName;

typedef char * ParameterName;

typedef char * SpaceName;

typedef char * DimensionName;

typedef char * TransportationName;

typedef char * OrderingName;

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

251

// typedef HandleValuePairSet AttributeHandleValuePairSet;

class AttributeHandleValuePairSet {
// Instances of class HandleValuePairSet are the containers used to pass
// object attribute values and interaction parameter values between the
// Fedrate and the RTI. These containers hold sets of attribute/parameter
// values indexed by their attribute/parameter handle. Instances of this
// class are provided to the RTI in the Update Attribute Values and Send
// Interaction service invocations. Instances of this class are provided
// to the Federate in the Reflect Attribute Values and Receive Interaction
// service invocations. When instances of HandleValuePairSet are provided
// to the Federate by the RTI, the memory used to store attribute/parameter
// values is valid for use by the federate only within the scope of the
// Reflect Attribute Values or Receive Interaction service invocation.
// Symmetrically, for instances of HandleValuePairSet provided by the Federate
// to the RTI, the memory used to store attribute/parameter values is valid
for
// use by the RTI only within the scope of the Update Attribute Values or Send
// Interaction service invocation.
public:
 virtual ~AttributeHandleValuePairSet() { ; }

 virtual ULong size() const = 0;

 virtual Handle getHandle(
 RTI::ULong i) const
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual ULong getValueLength(
 RTI::ULong i) const
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual void getValue(
 RTI::ULong i,
 char* buff,
 ULong& valueLength) const
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual char *getValuePointer(
 RTI::ULong i,
 ULong& valueLength) const
 throw (
 ArrayIndexOutOfBounds) = 0;

// virtual RTI::TransportType getTransportType(
// RTI::ULong i) const
// throw (
// ArrayIndexOutOfBounds) = 0;
//
// virtual RTI::OrderType getOrderType(
// RTI::ULong i) const
// throw (
// ArrayIndexOutOfBounds) = 0;
//
// virtual RTI::Region getRegion(

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

252

// RTI::ULong i) const
// throw (
// ArrayIndexOutOfBounds) = 0;

 virtual void add(
 Handle h,
 const char* buff,
 ULong valueLength)
 throw (
 ValueLengthExceeded,
 ValueCountExceeded) = 0;

 virtual void remove(// not guaranteed safe while iterating
 Handle h)
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual void moveFrom(
 const AttributeHandleValuePairSet& ahvps,
 RTI::ULong& i)
 throw (
 ValueCountExceeded,
 ArrayIndexOutOfBounds) = 0;

 virtual void empty() = 0; // Empty the Set without deallocating space.

 virtual inline RTI::ULong start() const = 0;
 virtual inline RTI::ULong valid(RTI::ULong i) const = 0;
 virtual inline RTI::ULong next(RTI::ULong i) const = 0;
};

class AttributeSetFactory {
public:
 static AttributeHandleValuePairSet* create(
 ULong count)
 throw (
 MemoryExhausted,
 ValueCountExceeded,
 HandleValuePairMaximumExceeded);
};

class AttributeHandleSet {
public:
 virtual ~AttributeHandleSet() { ; }

 virtual ULong size() const = 0;

 virtual AttributeHandle getHandle(ULong i) const
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual void add(AttributeHandle h)
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual void remove(AttributeHandle h)
 throw (// not guaranteed safe while iterating
 AttributeNotDefined) = 0;

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

253

 virtual void empty() = 0; // Empty the Set

 virtual Boolean isEmpty() const = 0; //is set empty?
 virtual Boolean isMember(AttributeHandle h) const = 0;

// AttributeHandleSet setUnion(const AttributeHandleSet &) const;
// AttributeHandleSet setIntersection(const AttributeHandleSet &) const;
// AttributeHandleSet removeSetIntersection(const AttributeHandleSet &)
const;

};

class AttributeHandleSetFactory {
public:
 static AttributeHandleSet* create(
 ULong count)
 throw(
 MemoryExhausted,
 ValueCountExceeded);
};

class FederateHandleSet {
public:
 virtual ULong size() const = 0;

 virtual FederateHandle getHandle(ULong i) const
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual void add(FederateHandle h)
 throw (
 ValueCountExceeded) = 0;

 virtual void remove(FederateHandle h)
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual void empty() = 0; // Empty the set without deallocating space.
};

class FederateHandleSetFactory {
public:
 static FederateHandleSet* create(ULong count)
 throw (
 MemoryExhausted,
 ValueCountExceeded);
};

struct EventRetractionHandle_s {
 FederationTime theEventTime;
 UniqueID theSerialNumber;
 FederateHandle sendingFederate;
};
typedef struct EventRetractionHandle_s EventRetractionHandle;

// typedef HandleValuePairSet ParameterHandleValuePairSet;

class ParameterHandleValuePairSet {

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

254

// Instances of class HandleValuePairSet are the containers used to pass
// object attribute values and interaction parameter values between the
// Fedrate and the RTI. These containers hold sets of attribute/parameter
// values indexed by their attribute/parameter handle. Instances of this
// class are provided to the RTI in the Update Attribute Values and Send
// Interaction service invocations. Instances of this class are provided
// to the Federate in the Reflect Attribute Values and Receive Interaction
// service invocations. When instances of HandleValuePairSet are provided
// to the Federate by the RTI, the memory used to store attribute/parameter
// values is valid for use by the federate only within the scope of the
// Reflect Attribute Values or Receive Interaction service invocation.
// Symmetrically, for instances of HandleValuePairSet provided by the Federate
// to the RTI, the memory used to store attribute/parameter values is valid
for
// use by the RTI only within the scope of the Update Attribute Values or Send
// Interaction service invocation.
public:
 virtual ~ParameterHandleValuePairSet() { ; }

 virtual ULong size() const = 0;

 virtual Handle getHandle(
 RTI::ULong i) const
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual ULong getValueLength(
 RTI::ULong i) const
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual void getValue(
 RTI::ULong i,
 char* buff,
 ULong& valueLength) const
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual char *getValuePointer(
 RTI::ULong i,
 ULong& valueLength) const
 throw (
 ArrayIndexOutOfBounds) = 0;

// virtual RTI::TransportType getTransportType(void)
// throw (
// ArrayIndexOutOfBounds) = 0;
//
// virtual RTI::OrderType getOrderType(void)
// throw (
// ArrayIndexOutOfBounds) = 0;
//
// virtual RTI::Region getRegion(void)
// throw (
// ArrayIndexOutOfBounds) = 0;

 virtual void add(
 Handle h,
 const char* buff,
 ULong valueLength)

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

255

 throw (
 ValueLengthExceeded,
 ValueCountExceeded) = 0;

 virtual void remove(// not guaranteed safe while iterating
 Handle h)
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual void moveFrom(
 const ParameterHandleValuePairSet& phvps,
 RTI::ULong& i)
 throw (
 ValueCountExceeded,
 ArrayIndexOutOfBounds) = 0;

 virtual void empty() = 0; // Empty the Set without deallocating space.

 virtual inline RTI::ULong start() const = 0;
 virtual inline RTI::ULong valid(RTI::ULong i) const = 0;
 virtual inline RTI::ULong next(RTI::ULong i) const = 0;
};

class ParameterSetFactory {
public:
 static ParameterHandleValuePairSet* create(ULong count)
 throw (
 MemoryExhausted,
 ValueCountExceeded,
 HandleValuePairMaximumExceeded);
};

class Region {
public:

 virtual ~Region();

 virtual ULong getRangeLowerBound(
 ExtentIndex theExtent,
 DimensionHandle theDimension) const
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual ULong getRangeUpperBound(
 ExtentIndex theExtent,
 DimensionHandle theDimension) const
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual void setRangeLowerBound(
 ExtentIndex theExtent,
 DimensionHandle theDimension,
 ULong theLowerBound)
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual void setRangeUpperBound(
 ExtentIndex theExtent,
 DimensionHandle theDimension,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

256

 ULong theUpperBound)
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual SpaceHandle getSpaceHandle() const
 throw (
) = 0;

 virtual ULong getNumberOfExtents() const
 throw (
) = 0;

 virtual ULong getRangeLowerBoundNotificationLimit(
 ExtentIndex theExtent,
 DimensionHandle theDimension) const
 throw (
 ArrayIndexOutOfBounds) = 0;

 virtual ULong getRangeUpperBoundNotificationLimit(
 ExtentIndex theExtent,
 DimensionHandle theDimension) const
 throw (
 ArrayIndexOutOfBounds) = 0;

};

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

257

//File RTIambServices.hh
//Included in RTI.hh

// RTI Parameter Passing Memory Conventions
//
// C1 In parameter by value.
// C2 Out parameter by pointer value.
// C3 Function return by value.
// C4 In parameter by const pointer value. Caller provides memory.
// Caller may free memory or overwrite it upon completion of
// the call. Callee must copy during the call anything it
// wishes to save beyond completion of the call. Parameter
// type must define const accessor methods.
// C5 Out parameter by pointer value. Caller provides reference to object.
// Callee constructs an instance on the heap (new) and returns.
// The caller destroys the instance (delete) at its leisure.
// C6 Function return by pointer value. Callee constructs an instance on
// the heap (new) and returns a reference. The caller destroys the
// instance (delete) at its leisure.
//

typedef FederateAmbassador *FederateAmbassadorPtr;

////////////////////////////////////
// Federation Management Services //
////////////////////////////////////

// 2.1
void createFederationExecution (
 const FederationExecutionName executionName, // supplied C4
 const FederationExecutionDataDesignator FED) // supplied C4
throw (
 FederationExecutionAlreadyExists,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 2.2
void destroyFederationExecution (
 const FederationExecutionName executionName) // supplied C4
throw (
 FederatesCurrentlyJoined,
 FederationExecutionDoesNotExist,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 2.3
FederateHandle // returned C3
joinFederationExecution (
 const FederateType yourName, // supplied C4
 const FederationExecutionName executionName, // supplied C4
 FederateAmbassadorPtr federateAmbassadorReference) // supplied C1
throw (

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

258

 FederateAlreadyExecutionMember,
 FederationExecutionDoesNotExist,
 CouldNotOpenFED,
 ErrorReadingFED,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 2.4
void resignFederationExecution (
 ResignAction theAction) // supplied C1
throw (
 FederateOwnsAttributes,
 FederateNotExecutionMember,
 InvalidResignAction,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 2.5
void registerFederationSynchronizationPoint (
 const SynchronizationLabel label, // supplied C4
 const UserSuppliedTag theTag) // supplied C4
throw (
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

void registerFederationSynchronizationPoint (
 const SynchronizationLabel label, // supplied C4
 const UserSuppliedTag theTag, // supplied C4
 const FederateHandleSet& syncSet) // supplied C4
throw (
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 2.7
void synchronizationPointAchieved (
 const SynchronizationLabel label) // supplied C4
throw (
 SynchronizationPointLabelWasNotAnnounced,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 2.9
void requestFederationSave (
 const SaveLabel label, // supplied C4
 FederationTime theTime) // supplied C1
throw (
 FederationTimeAlreadyPassed,
 InvalidFederationTime,
 FederateNotExecutionMember,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

259

 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

void requestFederationSave (
 const SaveLabel label) // supplied C4
 throw (
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 2.11
void federateSaveBegun ()
throw (
 SaveNotInitiated,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 2.12
void federateSaveComplete ()
throw (
 SaveNotInitiated,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

void federateSaveNotComplete ()
throw (
 SaveNotInitiated,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 2.14
void requestRestore (
 const SaveLabel label) // supplied C4
throw (
 SpecifiedSaveLabelDoesNotExist,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 2.17
void restoreComplete ()
 throw (
 RestoreNotRequested,
 RTICannotRestore,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

void restoreNotComplete ()

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

260

throw (
 RestoreNotRequested,
 RTICannotRestore,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

/////////////////////////////////////
// Declaration Management Services //
/////////////////////////////////////

// 3.1
void publishObjectClass (
 ObjectClassHandle theClass, // supplied C1
 const AttributeHandleSet& attributeList) // supplied C4
throw (
 ObjectClassNotDefined,
 AttributeNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 3.2
void unpublishObjectClass (
 ObjectClassHandle theClass) // supplied C1
throw (
 ObjectClassNotDefined,
 FederateOwnsAttributes,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 3.3
void publishInteractionClass (
 InteractionClassHandle theInteraction) // supplied C1
throw (
 InteractionClassNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 3.4
void unpublishInteractionClass (
 InteractionClassHandle theInteraction) // supplied C1
throw (
 InteractionClassNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 3.5
void subscribeObjectClassAttributes (

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

261

 ObjectClassHandle theClass, // supplied C1
 const AttributeHandleSet& attributeList, // supplied C4
 RTI::Boolean active = RTI::RTI_TRUE)
throw (
 ObjectClassNotDefined,
 AttributeNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 3.6
void unsubscribeObjectClass (
 ObjectClassHandle theClass) // supplied C1
throw (
 ObjectClassNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 3.7
void subscribeInteractionClass (
 InteractionClassHandle theClass, // supplied C1
 RTI::Boolean active = RTI::RTI_TRUE)
throw (
 InteractionClassNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 FederateLoggingServiceCalls,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 3.8
void unsubscribeInteractionClass (
 InteractionClassHandle theClass) // supplied C1
throw (
 InteractionClassNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

////////////////////////////////
// Object Management Services //
////////////////////////////////

// 4.1
ObjectHandle // returned C3
registerObjectInstance (
 ObjectClassHandle theClass, // supplied C1
 const ObjectName theObject) // supplied C4
throw (
 ObjectClassNotDefined,
 ObjectClassNotPublished,
 ObjectAlreadyRegistered,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

262

 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

ObjectHandle // returned C3
registerObjectInstance (
 ObjectClassHandle theClass) // supplied C1
throw (
 ObjectClassNotDefined,
 ObjectClassNotPublished,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 4.3
EventRetractionHandle // returned C3
updateAttributeValues (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleValuePairSet& theAttributes, // supplied C4
 FederationTime theTime, // supplied C1
 const UserSuppliedTag theTag) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 InvalidFederationTime,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

void updateAttributeValues (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleValuePairSet& theAttributes, // supplied C4
 const UserSuppliedTag theTag) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 4.5
EventRetractionHandle // returned C3
sendInteraction (
 InteractionClassHandle theInteraction, // supplied C1
 const ParameterHandleValuePairSet& theParameters, // supplied C4
 FederationTime theTime, // supplied C1
 const UserSuppliedTag theTag) // supplied C4
throw (
 InteractionClassNotDefined,
 InteractionClassNotPublished,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

263

 InteractionParameterNotDefined,
 InvalidFederationTime,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

void sendInteraction (
 InteractionClassHandle theInteraction, // supplied C1
 const ParameterHandleValuePairSet& theParameters, // supplied C4
 const UserSuppliedTag theTag) // supplied C4
throw (
 InteractionClassNotDefined,
 InteractionClassNotPublished,
 InteractionParameterNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 4.7
EventRetractionHandle // returned C3
deleteObjectInstance (
 ObjectHandle ObjectHandle, // supplied C1
 FederationTime theTime, // supplied C1
 const UserSuppliedTag theTag) // supplied C4
throw (
 ObjectNotKnown,
 DeletePrivilegeNotHeld,
 InvalidFederationTime,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

void deleteObjectInstance (
 ObjectHandle ObjectHandle, // supplied C1
 const UserSuppliedTag theTag) // supplied C4
throw (
 ObjectNotKnown,
 DeletePrivilegeNotHeld,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 4.9
void localDeleteObjectInstance (
 ObjectHandle ObjectHandle) // supplied C1
throw (
 ObjectNotKnown,
 FederateOwnsAttributes,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

264

 RTIinternalError);

// 4.10
void changeAttributeTransportType (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes, // supplied C4
 TransportType theType) // Must be replaced by below
li
ne.
// TransportationHandle theHandle) // supplied C1
throw (
 ObjectNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 InvalidTransportationHandle,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 4.11
void changeInteractionTransportType (
 InteractionClassHandle theClass, // supplied C1
 TransportType theType) // Must be replaced by below line.
// TransportationHandle theHandle) // supplied C1
throw (
 InteractionClassNotDefined,
 InteractionClassNotPublished,
 InvalidTransportationHandle,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 4.14
void requestObjectAttributeValueUpdate (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4
throw (
 AttributeNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

void requestClassAttributeValueUpdate (
 ObjectClassHandle theClass, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4
throw (
 ObjectClassNotDefined,
 AttributeNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

265

///////////////////////////////////
// Ownership Management Services //
///////////////////////////////////

// 5.1
void unconditionalAttributeOwnershipDivestiture (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 5.2
void negotiatedAttributeOwnershipDivestiture (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes, // supplied C4
 const UserSuppliedTag theTag) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 AttributeAlreadyBeingDivested,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 5.6
void attributeOwnershipAcquisition (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& desiredAttributes, // supplied C4
 const UserSuppliedTag theTag) // supplied C4
throw (
 ObjectNotKnown,
 ObjectClassNotPublished,
 AttributeNotDefined,
 AttributeNotPublished,
 FederateOwnsAttributes,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 5.7
void attributeOwnershipAcquisitionIfAvailable (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& desiredAttributes) // supplied C4
throw (
 ObjectNotKnown,
 ObjectClassNotPublished,
 AttributeNotDefined,
 AttributeNotPublished,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

266

 FederateOwnsAttributes,
 AttributeAlreadyBeingAcquired,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 5.10
AttributeHandleSet* // returned C6
attributeOwnershipReleaseResponse (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 FederateWasNotAskedToReleaseAttribute,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 5.11
void cancelNegotiatedAttributeOwnershipDivestiture (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 AttributeDivestitureWasNotRequested,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 5.12
void cancelAttributeOwnershipAcquisition (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotDefined,
 AttributeAlreadyOwned,
 AttributeAcquisitionWasNotRequested,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 5.14
void queryAttributeOwnership (
 ObjectHandle theObject, // supplied C1
 AttributeHandle theAttribute) // supplied C1
throw (
 ObjectNotKnown,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

267

 AttributeNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 5.16
Boolean // returned C3
isAttributeOwnedByFederate (
 ObjectHandle theObject, // supplied C1
 AttributeHandle theAttribute) // supplied C1
throw (
 ObjectNotKnown,
 AttributeNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

//////////////////////////////
// Time Management Services //
//////////////////////////////

// 6.1
void enableTimeRegulation (
 FederationTime theFederateTime, // supplied C1
 FederationTimeDelta theLookahead) // supplied C1
throw (
 FederateNotExecutionMember,
 TimeRegulationAlreadyEnabled,
 EnableTimeRegulationPending,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.3
void disableTimeRegulation ()
throw (
 FederateNotExecutionMember,
 TimeRegulationWasNotEnabled,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.4
void enableTimeConstrained ()
throw (
 FederateNotExecutionMember,
 TimeConstrainedAlreadyEnabled,
 EnableTimeConstrainedPending,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.6

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

268

void disableTimeConstrained ()
throw (
 FederateNotExecutionMember,
 TimeConstrainedWasNotEnabled,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.7
void timeAdvanceRequest (
 FederationTime theTime) // supplied C1
throw (
 TimeAdvanceAlreadyInProgress,
 FederationTimeAlreadyPassed,
 InvalidFederationTime,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.8
void timeAdvanceRequestAvailable (
 FederationTime theTime) // supplied C1
throw (
 TimeAdvanceAlreadyInProgress,
 FederationTimeAlreadyPassed,
 InvalidFederationTime,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.9
void nextEventRequest (
 FederationTime theTime) // supplied C1
throw (
 TimeAdvanceAlreadyInProgress,
 FederationTimeAlreadyPassed,
 InvalidFederationTime,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.10
void nextEventRequestAvailable (
 FederationTime theTime) // supplied C1
throw (
 TimeAdvanceAlreadyInProgress,
 FederationTimeAlreadyPassed,
 InvalidFederationTime,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

269

// 6.11
void flushQueueRequest (
 FederationTime theTime) // supplied C1
throw (
 TimeAdvanceAlreadyInProgress,
 FederationTimeAlreadyPassed,
 InvalidFederationTime,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.13
void enableAsynchronousDelivery()
 throw (
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.14
void disableAsynchronousDelivery()
 throw (
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.15
FederationTime // returned C3
queryLBTS ()
throw (
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.16
FederationTime // returned C3
queryFederateTime ()
throw (
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.17
FederationTime // returned C3
queryMinNextEventTime ()
throw (
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

270

 RTIinternalError);

// 6.18
void modifyLookahead (
 FederationTimeDelta theLookahead) // supplied C1
throw (
 InvalidLookahead,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.19
FederationTimeDelta // returned C3
queryLookahead ()
throw (
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.20
void retract (
 EventRetractionHandle theHandle) // supplied C1
throw (
 InvalidRetractionHandle,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.22
void changeAttributeOrderType (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes, // supplied C4
 OrderType theType) // Must be replaced by below line.
// OrderingHandle theHandle) // supplied C1
throw (
 ObjectNotKnown,
 AttributeNotDefined,
 AttributeNotOwned,
 InvalidOrderingHandle,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 6.23
void changeInteractionOrderType (
 InteractionClassHandle theClass, // supplied C1
 OrderType theType) // Must be replaced by below line.
// OrderingHandle theHandle) // supplied C1
throw (
 InteractionClassNotDefined,
 InteractionClassNotPublished,
 InvalidOrderingHandle,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

271

 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

//////////////////////////////////
// Data Distribution Management //
//////////////////////////////////

// 7.1
Region* // returned C6
createRegion (
 SpaceHandle theSpace, // supplied C1
 RTI::ULong numberOfExtents) // supplied C1
throw (
 SpaceNotDefined,
 InvalidExtents,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 7.2
void notifyAboutRegionModification (
 Region &theRegion) // supplied C4
throw (
 RegionNotKnown,
 InvalidExtents,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 7.3
void deleteRegion (
 Region *theRegion) // supplied C1
throw (
 RegionNotKnown,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 7.4
ObjectHandle // returned C3
registerObjectInstanceWithRegion (
 ObjectClassHandle theClass, // supplied C1
 const ObjectName theObject, // supplied C4
 AttributeHandle theAttributes[], // supplied C4
 Region *theRegions[], // supplied C4
 ULong theNumberOfHandles) // supplied C1
throw (
 RegionNotKnown,
 ObjectClassNotDefined,
 ObjectClassNotPublished,
 ObjectAlreadyRegistered,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

272

 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

ObjectHandle // returned C3
registerObjectInstanceWithRegion (
 ObjectClassHandle theClass, // supplied C1
 AttributeHandle theAttributes[], // supplied C4
 Region *theRegions[], // supplied C4
 ULong theNumberOfHandles) // supplied C1
throw (
 RegionNotKnown,
 ObjectClassNotDefined,
 ObjectClassNotPublished,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 7.5
void associateRegionForUpdates (
 Region &theRegion, // supplied C4
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet &theAttributes) // supplied C4
throw (
 RegionNotKnown,
 InvalidRegionContext,
 ObjectNotKnown,
 AttributeNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 7.6
void unassociateRegionForUpdates (
 Region &theRegion, // supplied C4
 ObjectHandle theObject) // supplied C1
throw (
 RegionNotKnown,
 InvalidRegionContext,
 ObjectNotKnown,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 7.7
void subscribeObjectClassAttributesWithRegion (
 ObjectClassHandle theClass, // supplied C1
 Region &theRegion, // supplied C4
 const AttributeHandleSet &attributeList, // supplied C4
 RTI::Boolean active = RTI::RTI_TRUE)
throw (
 RegionNotKnown,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

273

 ObjectClassNotDefined,
 AttributeNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 7.8
void unsubscribeObjectClassWithRegion (
 ObjectClassHandle theClass, // supplied C1
 Region &theRegion) // supplied C4
throw (
 RegionNotKnown,
 ObjectClassNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 7.9
void subscribeInteractionClassWithRegion (
 InteractionClassHandle theClass, // supplied C1
 Region &theRegion, // supplied C4
 RTI::Boolean active = RTI::RTI_TRUE)
throw (
 RegionNotKnown,
 InteractionClassNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 FederateLoggingServiceCalls,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 7.10
void unsubscribeInteractionClassWithRegion (
 InteractionClassHandle theClass, // supplied C1
 Region &theRegion) // supplied C4
throw (
 RegionNotKnown,
 InteractionClassNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 7.11
EventRetractionHandle // returned C3
sendInteractionWithRegion (
 InteractionClassHandle theInteraction, // supplied C1
 const ParameterHandleValuePairSet &theParameters, // supplied C4
 FederationTime theTime, // supplied C1
 const UserSuppliedTag theTag, // supplied C4
 const Region &theRegion) // supplied C4
throw (
 RegionNotKnown,
 InteractionClassNotDefined,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

274

 InteractionClassNotPublished,
 InteractionParameterNotDefined,
 InvalidFederationTime,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

void sendInteractionWithRegion (
 InteractionClassHandle theInteraction, // supplied C1
 const ParameterHandleValuePairSet &theParameters, // supplied C4
 const UserSuppliedTag theTag, // supplied C4
 const Region &theRegion) // supplied C4
throw (
 RegionNotKnown,
 InteractionClassNotDefined,
 InteractionClassNotPublished,
 InteractionParameterNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 7.12
void requestClassAttributeValueUpdateWithRegion (
 ObjectClassHandle theClass, // supplied C1
 const AttributeHandleSet &theAttributes, // supplied C4
 const Region &theRegion) // supplied C4
throw (
 RegionNotKnown,
 ObjectClassNotDefined,
 AttributeNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

//////////////////////////
// RTI Support Services //
//////////////////////////

// 8.1
ObjectClassHandle // returned C3
getObjectClassHandle (
 const ObjectClassName theName) // supplied C4
throw (
 NameNotFound,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.2
ObjectClassName // returned C6
getObjectClassName (
 ObjectClassHandle theHandle) // supplied C1
throw (
 ObjectClassNotDefined,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

275

 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.3
AttributeHandle // returned C3
getAttributeHandle (
 const AttributeName theName, // supplied C4
 ObjectClassHandle whichClass) // supplied C1
throw (
 ObjectClassNotDefined,
 NameNotFound,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.4
AttributeName // returned C6
getAttributeName (
 AttributeHandle theHandle, // supplied C1
 ObjectClassHandle whichClass) // supplied C1
throw (
 ObjectClassNotDefined,
 AttributeNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.5
InteractionClassHandle // returned C3
getInteractionClassHandle (
 const InteractionClassName theName) // supplied C4
throw (
 NameNotFound,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.6
InteractionClassName // returned C6
getInteractionClassName (
 InteractionClassHandle theHandle) // supplied C1
throw (
 InteractionClassNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.7
ParameterHandle // returned C3
getParameterHandle (
 const ParameterName theName, // supplied C4
 InteractionClassHandle whichClass) // supplied C1
throw (
 InteractionClassNotDefined,
 NameNotFound,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

276

// 8.8
ParameterName // returned C6
getParameterName (
 ParameterHandle theHandle, // supplied C1
 InteractionClassHandle whichClass) // supplied C1
throw (
 InteractionClassNotDefined,
 InteractionParameterNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.9
ObjectHandle // returned C3
getObjectInstanceHandle (
 const ObjectName theName) // supplied C4
throw (
 NameNotFound,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.10
ObjectName // returned C6
getObjectInstanceName (
 ObjectHandle theHandle) // supplied C1
throw (
 ObjectNotKnown,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.11
SpaceHandle // returned C3
getRoutingSpaceHandle (
 const SpaceName theName) // supplied C4
throw (
 NameNotFound,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.12
SpaceName // returned C6
getRoutingSpaceName (
 const SpaceHandle theHandle) // supplied C4
throw (
 SpaceNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.13
DimensionHandle // returned C3
getDimensionHandle (
 const DimensionName theName, // supplied C4
 SpaceHandle whichSpace) // supplied C1
throw (
 SpaceNotDefined,
 NameNotFound,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

277

 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.14
DimensionName // returned C6
getDimensionName (
 DimensionHandle theHandle, // supplied C1
 SpaceHandle whichClass) // supplied C1
throw (
 SpaceNotDefined,
 DimensionNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.15
SpaceHandle // returned C3
getAttributeRoutingSpaceHandle (
 AttributeHandle theHandle, // supplied C1
 ObjectClassHandle whichClass) // supplied C1
throw (
 ObjectClassNotDefined,
 AttributeNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.16
ObjectClassHandle // returned C3
getObjectClass (
 ObjectHandle theObject) // supplied C1
throw (
 ObjectNotKnown,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.17
SpaceHandle // returned C3
getInteractionRoutingSpaceHandle (
 InteractionClassHandle theHandle) // supplied C1
throw (
 InteractionClassNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.18
TransportationHandle // returned C3
getTransportationHandle (
 const TransportationName theName) // supplied C4
throw (
 NameNotFound,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.19
TransportationName // returned C6

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

278

getTransportationName (
 TransportationHandle theHandle) // supplied C1
throw (
 InvalidTransportationHandle,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.20
OrderingHandle // returned C3
getOrderingHandle (
 const OrderingName theName) // supplied C4
throw (
 NameNotFound,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.21
OrderingName // returned C6
getOrderingName (
 OrderingHandle theHandle) // supplied C1
throw (
 InvalidOrderingHandle,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

// 8.22
void enableClassRelevanceAdvisorySwitch()
throw(
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 8.23
void disableClassRelevanceAdvisorySwitch()
throw(
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 8.24
void enableAttributeRelevanceAdvisorySwitch()
throw(
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 8.25
void disableAttributeRelevanceAdvisorySwitch()
throw(
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

279

 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 8.26
void enableAttributeScopeAdvisorySwitch()
throw(
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 8.27
void disableAttributeScopeAdvisorySwitch()
throw(
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 8.28
void enableInteractionRelevanceAdvisorySwitch()
throw(
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

// 8.29
void disableInteractionRelevanceAdvisorySwitch()
throw(
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError);

//
Boolean // returned C3
tick ()
throw (
 SpecifiedSaveLabelDoesNotExist,
 ConcurrentAccessAttempted,
 RTIinternalError);

Boolean // returned C3
tick (
 TickTime minimum, // supplied C1
 TickTime maximum) // supplied C1
throw (
 SpecifiedSaveLabelDoesNotExist,
 ConcurrentAccessAttempted,
 RTIinternalError);

RTIambassador()
throw (
 MemoryExhausted,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

280

 RTIinternalError);

~RTIambassador()
throw (RTIinternalError);

// 8.XXX
ULong // returned C6
getNumberOfDimensions (
 const SpaceHandle theHandle) // supplied C4
throw (
 SpaceNotDefined,
 FederateNotExecutionMember,
 ConcurrentAccessAttempted,
 RTIinternalError);

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

281

//File federateAmbServices.hh
//Included in RTI.hh

// RTI Parameter Passing Memory Conventions
//
// C1 In parameter by value.
// C2 Out parameter by pointer value.
// C3 Function return by value.
// C4 In parameter by const pointer value. Caller provides memory.
// Caller may free memory or overwrite it upon completion of
// the call. Callee must copy during the call anything it
// wishes to save beyond completion of the call. Parameter
// type must define const accessor methods.
// C5 Out parameter by pointer value. Caller provides reference to object.
// Callee constructs an instance on the heap (new) and returns.
// The caller destroys the instance (delete) at its leisure.
// C6 Function return by pointer value. Callee constructs an instance on
// the heap (new) and returns a reference. The caller destroys the
// instance (delete) at its leisure.
//

////////////////////////////////////
// Federation Management Services //
////////////////////////////////////

// 2.?
virtual void synchronizationPointRegistrationSucceeded (
 const SynchronizationLabel label) // supplied C4)
throw (
 FederateInternalError) = 0;

virtual void synchronizationPointRegistrationFailed (
 const SynchronizationLabel label) // supplied C4)
throw (
 FederateInternalError) = 0;

// 2.6
virtual void announceSynchronizationPoint (
 const SynchronizationLabel label, // supplied C4
 const UserSuppliedTag tag) // supplied C4
throw (
 FederateInternalError) = 0;

// 2.8
virtual void federationSynchronized (
 const SynchronizationLabel label) // supplied C4)
throw (
 FederateInternalError) = 0;

// 2.10
virtual void initiateFederateSave (
 const SaveLabel label) // supplied C4
throw (
 UnableToPerformSave,
 FederateInternalError) = 0;

// 2.13

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

282

virtual void federationSaved ()
throw (
 FederateInternalError) = 0;

virtual void federationNotSaved ()
throw (
 FederateInternalError) = 0;

// 2.15
virtual void federationSaveBegun ()
throw (
 FederateInternalError) = 0;

// 2.16
virtual void initiateRestore (
 const SaveLabel label, // supplied C4
 FederateHandle handle) // supplied C1
throw (
 SpecifiedSaveLabelDoesNotExist,
 CouldNotRestore,
 FederateInternalError) = 0;

// 2.18
virtual void federationRestored ()
throw (
 FederateInternalError) = 0;

virtual void federationNotRestored ()
throw (
 FederateInternalError) = 0;

/////////////////////////////////////
// Declaration Management Services //
/////////////////////////////////////

// 3.9
virtual void startRegistrationForObjectClass (
 ObjectClassHandle theClass) // supplied C1
throw (
 ObjectClassNotPublished,
 AttributeNotPublished,
 FederateInternalError) = 0;

// 3.10
virtual void stopRegistrationForObjectClass (
 ObjectClassHandle theClass) // supplied C1
throw (
 ObjectClassNotPublished,
 AttributeNotPublished,
 FederateInternalError) = 0;

// 3.11
virtual void turnInteractionsOn (
 InteractionClassHandle theHandle) // supplied C1
throw (
 InteractionClassNotPublished,
 FederateInternalError) = 0;

// 3.12
virtual void turnInteractionsOff (

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

283

 InteractionClassHandle theHandle) // supplied C1
throw (
 InteractionClassNotPublished,
 FederateInternalError) = 0;

////////////////////////////////
// Object Management Services //
////////////////////////////////

// 4.2
virtual void discoverObjectInstance (
 ObjectHandle theObject, // supplied C1
 ObjectClassHandle theObjectClass) // supplied C1
throw (
 CouldNotDiscover,
 ObjectClassNotKnown,
 FederateInternalError) = 0;

// 4.4
virtual void reflectAttributeValues (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleValuePairSet& theAttributes, // supplied C4
 FederationTime theTime, // supplied C1
 const UserSuppliedTag theTag, // supplied C4
 EventRetractionHandle theHandle) // supplied C1
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 InvalidFederationTime,
 FederateInternalError) = 0;

virtual void reflectAttributeValues (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleValuePairSet& theAttributes, // supplied C4
 const UserSuppliedTag theTag) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 FederateInternalError) = 0;

// 4.6
virtual void receiveInteraction (
 InteractionClassHandle theInteraction, // supplied C1
 const ParameterHandleValuePairSet& theParameters, // supplied C4
 FederationTime theTime, // supplied C1
 const UserSuppliedTag theTag, // supplied C4
 EventRetractionHandle theHandle) // supplied C1
throw (
 InteractionClassNotKnown,
 InteractionParameterNotKnown,
 InvalidFederationTime,
 FederateInternalError) = 0;

virtual void receiveInteraction (
 InteractionClassHandle theInteraction, // supplied C1
 const ParameterHandleValuePairSet& theParameters, // supplied C4
 const UserSuppliedTag theTag) // supplied C4
throw (
 InteractionClassNotKnown,
 InteractionParameterNotKnown,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

284

 FederateInternalError) = 0;

// 4.8
virtual void removeObjectInstance (
 ObjectHandle theObject, // supplied C1
 FederationTime theTime, // supplied C1
 const UserSuppliedTag theTag, // supplied C4
 EventRetractionHandle theHandle) // supplied C1
throw (
 ObjectNotKnown,
 InvalidFederationTime,
 FederateInternalError) = 0;

virtual void removeObjectInstance (
 ObjectHandle theObject, // supplied C1
 const UserSuppliedTag theTag) // supplied C4
throw (
 ObjectNotKnown,
 FederateInternalError) = 0;

// 4.12
virtual void attributesInScope (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 FederateInternalError) = 0;

// 4.13
virtual void attributesOutOfScope (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 FederateInternalError) = 0;

// 4.15
virtual void provideAttributeValueUpdate (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 FederateInternalError) = 0;

// 4.16
virtual void turnUpdatesOnForObjectInstance (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotOwned,
 FederateInternalError) = 0;

// 4.17
virtual void turnUpdatesOffForObjectInstance (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

285

throw (
 ObjectNotKnown,
 AttributeNotOwned,
 FederateInternalError) = 0;

///////////////////////////////////
// Ownership Management Services //
///////////////////////////////////

// 5.3
virtual void requestAttributeOwnershipAssumption (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& offeredAttributes, // supplied C4
 const UserSuppliedTag theTag) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 AttributeAlreadyOwned,
 AttributeNotPublished,
 FederateInternalError) = 0;

// 5.4
virtual void attributeOwnershipDivestitureNotification (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& releasedAttributes) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 AttributeNotOwned,
 AttributeDivestitureWasNotRequested,
 FederateInternalError) = 0;

// 5.5
virtual void attributeOwnershipAcquisitionNotification (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& securedAttributes) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 AttributeAcquisitionWasNotRequested,
 AttributeAlreadyOwned,
 AttributeNotPublished,
 FederateInternalError) = 0;

// 5.8
virtual void attributeOwnershipUnavailable (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 AttributeAlreadyOwned,
 AttributeAcquisitionWasNotRequested,
 FederateInternalError) = 0;

// 5.9
virtual void requestAttributeOwnershipRelease (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& candidateAttributes, // supplied C4
 const UserSuppliedTag theTag) // supplied C4

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

286

throw (
 ObjectNotKnown,
 AttributeNotKnown,
 AttributeNotOwned,
 FederateInternalError) = 0;

// 5.13
virtual void confirmAttributeOwnershipAcquisitionCancellation (
 ObjectHandle theObject, // supplied C1
 const AttributeHandleSet& theAttributes) // supplied C4
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 AttributeAlreadyOwned,
 AttributeAcquisitionWasNotCanceled,
 FederateInternalError) = 0;

// 5.15
virtual void informAttributeOwnership (
 ObjectHandle theObject, // supplied C1
 AttributeHandle theAttribute, // supplied C1
 FederateHandle theOwner) // supplied C1
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 FederateInternalError) = 0;

virtual void attributeIsNotOwned (
 ObjectHandle theObject, // supplied C1
 AttributeHandle theAttribute) // supplied C1
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 FederateInternalError) = 0;

virtual void attributeOwnedByRTI (
 ObjectHandle theObject, // supplied C1
 AttributeHandle theAttribute) // supplied C1
throw (
 ObjectNotKnown,
 AttributeNotKnown,
 FederateInternalError) = 0;

//////////////////////////////
// Time Management Services //
//////////////////////////////

// 6.2
virtual void timeRegulationEnabled (
 FederationTime theFederateTime) // supplied C1
throw (
 InvalidFederationTime,
 EnableTimeRegulationWasNotPending,
 FederateInternalError) = 0;

// 6.5
virtual void timeConstrainedEnabled (
 FederationTime theFederateTime) // supplied C1
throw (
 InvalidFederationTime,

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

287

 EnableTimeConstrainedWasNotPending,
 FederateInternalError) = 0;

// 6.12
virtual void timeAdvanceGrant (
 FederationTime theTime) // supplied C1
throw (
 InvalidFederationTime,
 TimeAdvanceWasNotInProgress,
 FederationTimeAlreadyPassed,
 FederateInternalError) = 0;

// 6.21
virtual void requestRetraction (
 EventRetractionHandle theHandle) // supplied C1
throw (
 EventNotKnown,
 FederateInternalError) = 0;

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

289

ANNEX C (normative)
Ada 95 application programmer’s interface
TBS
—

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

291

ANNEX D (normative)
Java application programmer’s interface
TBS

HLA IF SPEC, V1.3 DRAFT 9 5 February 1998

Copyright © 1998 IEEE. All rights reserved
This is an unapproved IEEE Standards Draft, subject to change

293

ANNEX E (informative)
Bibliography
[A1] Harel, David. “Statecharts: A Visual Formalism for Complex Systems,” Science of Computer
Programming (Netherlands) 8, 3 (June 1987): 231-274.

[A2] U.S. Department of Defense, High Level Architecture, Data Distribution Management: Design Document
Version 0.5, February 1997.

[A3] U.S. Department of Defense, “Annotated Briefing on the DoD High Level Architecture for
Simulation.” Briefing, Defense Modeling and Simulation Office. Available WWW:
<URL: http://hla.dmso.mil/hla/general/annotate/sld001.htm>

[A4] U.S. Department of Defense, High Level Architecture, Time Management: Design Document,
Defense Modeling and Simulation Office. Available WWW:
<URL: http://hla.dmso.mil/hla/tech/ifspec/TIM_MGT1.DOC>

